-
Notifications
You must be signed in to change notification settings - Fork 0
/
q4_softmaxreg.py
115 lines (92 loc) · 4.18 KB
/
q4_softmaxreg.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
import numpy as np
import random
from big_data.data_utils import *
from q1_softmax import softmax
from q2_gradcheck import gradcheck_naive
from q3_sgd import load_saved_params
def getSentenceFeature(tokens, wordVectors, sentence):
""" Obtain the sentence feature for sentiment analysis by averaging its word vectors """
# Implement computation for the sentence features given a sentence.
# Inputs:
# - tokens: a dictionary that maps words to their indices in
# the word vector list
# - wordVectors: word vectors (each row) for all tokens
# - sentence: a list of words in the sentence of interest
# Output:
# - sentVector: feature vector for the sentence
sentVector = np.zeros((wordVectors.shape[1],))
### YOUR CODE HERE
for word in sentence:
vector = wordVectors[tokens[word],:]
sentVector += vector
sentVector = sentVector/len(sentence)
### END YOUR CODE
return sentVector
def softmaxRegression(features, labels, weights, regularization = 0.0, nopredictions = False):
""" Softmax Regression """
# Implement softmax regression with weight regularization.
# Inputs:
# - features: feature vectors, each row is a feature vector
# - labels: labels corresponding to the feature vectors
# - weights: weights of the regressor
# - regularization: L2 regularization constant
# Output:
# - cost: cost of the regressor
# - grad: gradient of the regressor cost with respect to its
# weights
# - pred: label predictions of the regressor (you might find
# np.argmax helpful)
prob = softmax(features.dot(weights))
if len(features.shape) > 1:
N = features.shape[0]
else:
N = 1
# A vectorized implementation of 1/N * sum(cross_entropy(x_i, y_i)) + 1/2*|w|^2
cost = np.sum(-np.log(prob[range(N), labels])) / N
cost += 0.5 * regularization * np.sum(weights ** 2)
### YOUR CODE HERE: compute the gradients and predictions
grad = np.zeros_like(weights)
error = prob - np.eye(np.shape(weights)[1])[labels]
grad = np.dot(features.T,error)/N + regularization*weights
if N > 1:
pred = np.argmax(prob, axis=1)
else:
pred = np.argmax(prob)
### END YOUR CODE
if nopredictions:
return cost, grad
else:
return cost, grad, pred
def accuracy(y, yhat):
""" Precision for classifier """
assert(y.shape == yhat.shape)
return np.sum(y == yhat) * 100.0 / y.size
def softmax_wrapper(features, labels, weights, regularization = 0.0):
cost, grad, _ = softmaxRegression(features, labels, weights,
regularization)
return cost, grad
def sanity_check():
"""
Run python q4_softmaxreg.py.
"""
random.seed(314159)
np.random.seed(265)
dataset = StanfordSentiment()
tokens = dataset.tokens()
nWords = len(tokens)
_, wordVectors0, _ = load_saved_params()
wordVectors = (wordVectors0[:nWords,:] + wordVectors0[nWords:,:])
dimVectors = wordVectors.shape[1]
dummy_weights = 0.1 * np.random.randn(dimVectors, 5)
dummy_features = np.zeros((10, dimVectors))
dummy_labels = np.zeros((10,), dtype=np.int32)
for i in xrange(10):
words, dummy_labels[i] = dataset.getRandomTrainSentence()
dummy_features[i, :] = getSentenceFeature(tokens, wordVectors, words)
print "==== Gradient check for softmax regression ===="
gradcheck_naive(lambda weights: softmaxRegression(dummy_features,
dummy_labels, weights, 1.0, nopredictions = True), dummy_weights)
print "\n=== Results ==="
print softmaxRegression(dummy_features, dummy_labels, dummy_weights, 1.0)
if __name__ == "__main__":
sanity_check()