-
Notifications
You must be signed in to change notification settings - Fork 10
/
trainval_net.py
588 lines (526 loc) · 25.7 KB
/
trainval_net.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
# --------------------------------------------------------
# Pytorch multi-GPU Faster R-CNN
# Licensed under The MIT License [see LICENSE for details]
# Written by Jiasen Lu, Jianwei Yang, based on code from Ross Girshick
# Modified by Jaedong Hwang for implementing OICR
# --------------------------------------------------------
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import _init_paths
import os
import sys
import numpy as np
import argparse
import pprint
import pdb
import time
import torch
from torch.autograd import Variable
import torch.nn as nn
import torch.optim as optim
import torchvision.transforms as transforms
from torch.utils.data.sampler import Sampler
from roi_data_layer.roidb import combined_roidb
from roi_data_layer.roibatchLoader import roibatchLoader, collate_fn
from model.utils.config import cfg, cfg_from_file, cfg_from_list, get_output_dir
from model.utils.net_utils import weights_normal_init, save_net, load_net, \
adjust_learning_rate, save_checkpoint, clip_gradient
from model.utils.net_utils import save_net, load_net, vis_detections
from model.oicr.vgg16_oicr import vgg16_oicr
import model.utils.logger as logger
#import tensorflow as tf
import cv2
from scipy.misc import imsave
from model.nms.nms_wrapper import nms
def parse_args():
"""
Parse input arguments
"""
parser = argparse.ArgumentParser(description='Train a Fast R-CNN network')
parser.add_argument('--dataset', dest='dataset',
help='training dataset',
default='pascal_voc', type=str)
parser.add_argument('--net', dest='net',
help='vgg16, vggm',
default='vgg16', type=str)
parser.add_argument('--start_epoch', dest='start_epoch',
help='starting epoch',
default=1, type=int)
parser.add_argument('--epochs', dest='max_epochs',
help='number of epochs to train',
default=20, type=int)
parser.add_argument('--disp_interval', dest='disp_interval',
help='number of iterations to display',
default=100, type=int)
parser.add_argument('--checkpoint_interval', dest='checkpoint_interval',
help='number of iterations to display',
default=1000, type=int)
parser.add_argument('--save_dir', dest='save_dir',
help='directory to save models', default="models",
type=str)
parser.add_argument('--nw', dest='num_workers',
help='number of worker to load data',
default=0, type=int)
parser.add_argument('--cuda', dest='cuda',
help='whether use CUDA',
action='store_true')
parser.add_argument('--ls', dest='large_scale',
help='whether use large imag scale',
action='store_true')
parser.add_argument('--mGPUs', dest='mGPUs',
help='whether use multiple GPUs',
action='store_true')
parser.add_argument('--bs', dest='batch_size',
help='batch_size, this should be 2n',
default=1, type=int)
parser.add_argument('--cag', dest='class_agnostic',
help='whether perform class_agnostic bbox regression',
action='store_true')
parser.add_argument('--model', default='oicr', type=str)
# config optimization
parser.add_argument('--o', dest='optimizer',
help='training optimizer',
default="sgd", type=str)
parser.add_argument('--lr', dest='lr',
help='starting learning rate',
default=0.001, type=float)
parser.add_argument('--lr_decay_step', dest='lr_decay_step',
help='step to do learning rate decay, unit is epoch',
default=5, type=int)
parser.add_argument('--lr_decay_gamma', dest='lr_decay_gamma',
help='learning rate decay ratio',
default=0.1, type=float)
# set training session
parser.add_argument('--s', dest='session',
help='training session',
default=1, type=int)
# resume trained model
parser.add_argument('--checkpoint', dest='checkpoint',
help='checkpoint to load model',
default=-1, type=int)
# log and diaplay
parser.add_argument('--use_tb', dest='use_tb',
help='whether use tensorboard',
action='store_true')
parser.add_argument('--load_dir', dest='load_dir', type=str, default=None)
parser.add_argument('--vis', dest='vis',
help='visualization mode',
action='store_true')
parser.add_argument('--threshold',type=float, default=0.01)
args = parser.parse_args()
return args
class Summary(object):
def __init__(self, sess, path):
self.sess = sess
self.placeholders = {}
self.kvs = {}
self.merged= None
self.writer = tf.summary.FileWriter(path)
def add_value(self, key, val):
if key not in self.kvs :
var = tf.Variable(0.)
self.placeholders[key] = tf.placeholder("float")
summary_var = var.assign(self.placeholders[key])
tf.summary.scalar(key, summary_var)
self.kvs[key] = val
def add_hist (self, name, grad) :
tf.summary.histogram(name,grad)
def add_sess(self,sess) :
self.sess =sess
def run(self, step) :
if self.merged is None:
self.merged = tf.summary.merge_all()
s = {self.placeholders[k] : self.kvs[k] for k in self.kvs.keys() }
ret = self.sess.run(self.merged,s)
self.writer.add_summary(ret, step)
class sampler(Sampler):
def __init__(self, train_size, batch_size):
self.num_data = train_size
self.num_per_batch = int(train_size / batch_size)
self.batch_size = batch_size
self.range = torch.arange(0,batch_size).view(1, batch_size).long()
self.leftover_flag = False
if train_size % batch_size:
self.leftover = torch.arange(self.num_per_batch*batch_size, train_size).long()
self.leftover_flag = True
def __iter__(self):
rand_num = torch.randperm(self.num_per_batch).view(-1,1) * self.batch_size
self.rand_num = rand_num.expand(self.num_per_batch, self.batch_size) + self.range
self.rand_num_view = self.rand_num.view(-1)
if self.leftover_flag:
self.rand_num_view = torch.cat((self.rand_num_view, self.leftover),0)
return iter(self.rand_num_view)
def __len__(self):
return self.num_data
########### MAIN ######################
if __name__ == '__main__':
args = parse_args()
print('Called with args:')
print(args)
if args.dataset == "pascal_voc":
args.imdb_name = "voc_2007_trainval"
args.imdbval_name = "voc_2007_trainval"
args.set_cfgs = ['ANCHOR_SCALES', '[8, 16, 32]', 'ANCHOR_RATIOS', '[0.5,1,2]', 'MAX_NUM_GT_BOXES', '20']
if args.dataset == "pascal_voc_2012":
args.imdb_name = "voc_2012_trainval"
args.imdbval_name = "voc_2012_trainval"
args.set_cfgs = ['ANCHOR_SCALES', '[8, 16, 32]', 'ANCHOR_RATIOS', '[0.5,1,2]', 'MAX_NUM_GT_BOXES', '20']
elif args.dataset == "pascal_voc_0712":
args.imdb_name = "voc_2007_trainval+voc_2012_trainval"
args.imdbval_name = "voc_2007_test"
args.set_cfgs = ['ANCHOR_SCALES', '[8, 16, 32]', 'ANCHOR_RATIOS', '[0.5,1,2]', 'MAX_NUM_GT_BOXES', '20']
elif args.dataset == "coco":
args.imdb_name = "coco_2014_train+coco_2014_valminusminival"
args.imdbval_name = "coco_2014_minival"
args.set_cfgs = ['ANCHOR_SCALES', '[4, 8, 16, 32]', 'ANCHOR_RATIOS', '[0.5,1,2]', 'MAX_NUM_GT_BOXES', '50']
elif args.dataset == "imagenet":
args.imdb_name = "imagenet_train"
args.imdbval_name = "imagenet_val"
args.set_cfgs = ['ANCHOR_SCALES', '[4, 8, 16, 32]', 'ANCHOR_RATIOS', '[0.5,1,2]', 'MAX_NUM_GT_BOXES', '30']
elif args.dataset == "vg":
# train sizes: train, smalltrain, minitrain
# train scale: ['150-50-20', '150-50-50', '500-150-80', '750-250-150', '1750-700-450', '1600-400-20']
args.imdb_name = "vg_150-50-50_minitrain"
args.imdbval_name = "vg_150-50-50_minival"
args.set_cfgs = ['ANCHOR_SCALES', '[4, 8, 16, 32]', 'ANCHOR_RATIOS', '[0.5,1,2]', 'MAX_NUM_GT_BOXES', '50']
args.cfg_file = "cfgs/{}_ls.yml".format(args.net) if args.large_scale else "cfgs/{}.yml".format(args.net)
if args.cfg_file is not None:
cfg_from_file(args.cfg_file)
if args.set_cfgs is not None:
cfg_from_list(args.set_cfgs)
vis = args.vis
print('Using config:')
pprint.pprint(cfg)
np.random.seed(cfg.RNG_SEED)
#torch.backends.cudnn.benchmark = True
if torch.cuda.is_available() and not args.cuda:
print("WARNING: You have a CUDA device, so you should probably run with --cuda")
# train set
# -- Note: Use validation set and disable the flipped to enable faster loading.
cfg.TRAIN.USE_FLIPPED = True
cfg.USE_GPU_NMS = args.cuda
print(cfg.TRAIN.PROPOSAL_METHOD)
imdb, roidb, ratio_list, ratio_index = combined_roidb(args.imdb_name)
train_size = len(roidb)
ma = -1
mi = 1e10
for r in imdb.roidb :
l = len(r['boxes'])
if mi > l :
mi = l
if ma < l :
ma = l
print(ma,mi)
print('{:d} roidb entries'.format(len(roidb)))
if args.batch_size % 2 is not 0 :
raise Exception("batch size should be 2*N")
# this is because original implementation is based on caffe.
# the batchsize 2 on caffe is defined as two forward and backward once.
# Theoratically, if then, the loss should be divided by 2.
# However, since caffe does not, and it weaken the performance,
# I set forward twice and backward once as default.
args.batch_size //=2
output_dir = args.save_dir + "/" + args.net + "/" + args.dataset
if args.load_dir is None :
load_dir = output_dir
else :
load_dir = args.load_dir + "/" + args.net + "/" + args.dataset
if not os.path.exists(output_dir):
os.makedirs(output_dir)
sampler_batch = sampler(train_size, args.batch_size)
dataset = roibatchLoader(roidb, ratio_list, ratio_index, args.batch_size,\
imdb.num_classes, training=True)
if args.batch_size >= 2 :
dataloader = torch.utils.data.DataLoader(dataset, batch_size= args.batch_size,
sampler=sampler_batch, num_workers=args.num_workers,
collate_fn=collate_fn) # collate_fn is for multi-GPU
else : # this will be refactored.
dataloader = torch.utils.data.DataLoader(dataset, batch_size= args.batch_size,
sampler=sampler_batch, num_workers=args.num_workers)
# initilize the tensor holder here.
im_data = torch.FloatTensor(1)
im_rois = torch.FloatTensor(1)
labels = torch.FloatTensor(1)
num_boxes = torch.FloatTensor(1)
# ship to cuda
if args.cuda:
im_data = im_data.cuda()
im_rois = im_rois.cuda()
labels = labels.cuda()
num_boxes = num_boxes.cuda()
# make variable
im_data = Variable(im_data)
im_rois = Variable(im_rois)
labels = Variable(labels)
num_boxes = Variable(num_boxes)
if args.cuda:
cfg.CUDA = True
tb = None
summary=None
log_dir = os.path.join(args.save_dir,'log')
# if os.path.exists(log_dir) :
# print('{} directory already exists'.format(log_dir))
# for i in range(2,100) :
# if not os.path.exists(log_dir + '_' + str(i)) :
# log_dir = log_dir + '_' + str(i)
logger.configure(dir=log_dir)
if args.use_tb :
num_cpu = 1
tf_config = tf.ConfigProto(inter_op_parallelism_threads=num_cpu,
intra_op_parallelism_threads=num_cpu, gpu_options=tf.GPUOptions(
per_process_gpu_memory_fraction=0.005))
sess = tf.Session(config=tf_config)
summary = Summary(sess, log_dir)
tb = logger.Logger(log_dir, output_formats=[logger.TensorBoardOutputFormat(log_dir)])
# initilize the network here.
print(args.model)
if args.model == 'oicr' :
OICR = vgg16_oicr(imdb.classes, pretrained=True, class_agnostic=args.class_agnostic, summary=summary)
else :
raise Exception("Model does not exist")
OICR.create_architecture()
lr = cfg.TRAIN.LEARNING_RATE
lr = args.lr
#tr_momentum = cfg.TRAIN.MOMENTUM
#tr_momentum = args.momentum
weight_decay = cfg.TRAIN.WEIGHT_DECAY
param_groups = OICR.groups
if args.cuda:
OICR.cuda()
params = [{'params': param_groups[0], 'lr': lr, 'weight_decay': weight_decay},
{'params': param_groups[1], 'lr': 2*lr, 'weight_decay': 0},
{'params': param_groups[2], 'lr': 10*lr, 'weight_decay': weight_decay},
{'params': param_groups[3], 'lr': 20*lr, 'weight_decay': 0}
]
if args.optimizer == "adam":
lr = lr * 0.1
optimizer = torch.optim.Adam(params)
elif args.optimizer == "sgd": # 0.001 ~ 40k decrease to 0.0001 ~ + 30k
optimizer = torch.optim.SGD(params, momentum=cfg.TRAIN.MOMENTUM)
if args.checkpoint >= 0:
load_name = os.path.join(load_dir,'{:06d}.pth'.format(args.checkpoint))
print("loading checkpoint %s" % (load_name))
checkpoint = torch.load(load_name, map_location=lambda storage, loc:storage)
args.session = checkpoint['session']
args.start_epoch = checkpoint['epoch']
OICR.load_state_dict(checkpoint['model'])
optimizer.load_state_dict(checkpoint['optimizer'])
lr = optimizer.param_groups[0]['lr']
if 'pooling_mode' in checkpoint.keys():
cfg.POOLING_MODE = checkpoint['pooling_mode']
print("loaded checkpoint %s" % (load_name))
total_step = int(args.checkpoint)
else :
total_step = 0
print("Learning rate {}".format(lr))
if args.mGPUs:
OICR = nn.DataParallel(OICR)
OICR.cuda()
iters_per_epoch = int(train_size / args.batch_size)
grads = {} # for recording gradients
def save_grad(name):
def hook(grad):
grads[name] = grad
return hook
def cycle (it) :
while True :
for x in it :
yield x
for epoch in range(args.start_epoch, args.max_epochs + 1):
# setting to train mode
OICR.train()
loss_temp = 0
loss_midn_temp = 0
loss_oicr_temp = 0
loss_oc1_temp = 0
loss_oc2_temp = 0
loss_oc3_temp = 0
start = time.time()
if args.mGPUs :
groups = OICR.module.groups
else :
groups = OICR.groups
if args.batch_size == 1 :
digit = 2
else :
digit = 1
#data_iter = iter(dataloader)
data_iter = iter(cycle(dataloader))
loading_time = 0
for step in range(iters_per_epoch):
OICR.zero_grad()
optimizer.zero_grad()
loss = 0
if total_step == 4e4:
adjust_learning_rate(optimizer, args.lr_decay_gamma)
lr *= args.lr_decay_gamma
# for the case of sequential batch, the below should be for _ in range(args.batch_size)
for _ in range(2): # to follow caffe work
jaed = time.time()
data = next(data_iter)
loading_time += (time.time() - jaed)
im_data.data.resize_(data[0].size()).copy_(data[0])
im_rois.data.resize_(data[1].size()).copy_(data[1])
labels.data.resize_(data[2].size()).copy_(data[2])
num_boxes.data.resize_(data[3].size()).copy_(data[3])
labels = torch.squeeze(labels).view(im_data.size(0), labels.size(-1))
rois, midn_loss, oc1, oc2, oc3, cls_prob= OICR(im_data, im_rois, labels, num_boxes)
oicr_loss = oc1 + oc2 + oc3
rois_label= cls_prob
loss_total = midn_loss + oicr_loss
midn_loss = midn_loss.mean()
oicr_loss = oicr_loss.mean()
oc1 = oc1.mean()
oc2 = oc2.mean()
oc3 = oc3.mean()
loss = midn_loss + oicr_loss
loss_temp += loss.item()
loss_midn_temp += midn_loss.item()
loss_oicr_temp += oicr_loss.item()
loss_oc1_temp += oc1.item()
loss_oc2_temp += oc2.item()
loss_oc3_temp += oc3.item()
# backward
#loss /= 2 #digit #args.batch_size # see https://discuss.pytorch.org/t/pytorch-gradients/884
loss.backward(retain_graph=True)
total_step +=1
# batch end
if args.net == "vgg16":
clip_gradient(OICR, 10.)
optimizer.step()
if total_step % args.disp_interval == 0:
end = time.time()
if step > 0:
loss_temp /= (args.disp_interval + 1)
loss_midn_temp /= (args.disp_interval + 1)
loss_oicr_temp /= (args.disp_interval + 1)
loss_oc1_temp /= (args.disp_interval + 1)
loss_oc2_temp /= (args.disp_interval + 1)
loss_oc3_temp /= (args.disp_interval + 1)
if args.mGPUs:
loss_midn = midn_loss.mean().item()
loss_oicr = oicr_loss.mean().item()
loss_oicr1 = oc1.mean().item()
loss_oicr2 = oc2.mean().item()
loss_oicr3 = oc3.mean().item()
fg_cnt = torch.sum(rois_label.data.ne(0))
bg_cnt = rois_label.data.numel() - fg_cnt
record_module = OICR.module # parallel encapsulate OICR
else:
loss_midn = midn_loss.item()
loss_oicr = oicr_loss.item()
loss_oicr1 = oc1.item()
loss_oicr2 = oc2.item()
loss_oicr3 = oc3.item()
fg_cnt = torch.sum(rois_label.data.ne(0))
bg_cnt = rois_label.data.numel() - fg_cnt
record_module = OICR
a = torch.max(im_rois[:,:,1]).data
b = torch.max(im_rois[:,:,2]).data
c = torch.max(im_rois[:,:,3]).data
d = torch.max(im_rois[:,:,4]).data
logger.log("[session %d][epoch %2d][iter %4d/%4d] loss: %.4f, lr: %.2e" \
% (args.session, epoch, step, iters_per_epoch, loss_temp, lr))
logger.log("\t\t\tfg/bg=(%d/%d), time cost: %f" % (fg_cnt, bg_cnt, end-start))
#print("\t\t\tmidn : %.4f, oicr : %.4f" % (loss_midn, loss_oicr))
logger.log("\t\t\tmidn : %.4f, oicr : %.4f" % (loss_midn_temp, loss_oicr_temp))
logger.log("\t\t\tdata loading : %.4f" %(loading_time))
loading_time = 0
print(c,d, im_data.shape)
logger.log("Logging to {}".format(log_dir))
# end batch
# logging
logger.record_tabular('loss', loss_temp)
logger.record_tabular('midn_loss', loss_midn_temp)
logger.record_tabular('oicr_loss', loss_oicr_temp)
logger.record_tabular('oicr_loss1', loss_oc1_temp)
logger.record_tabular('oicr_loss2', loss_oc2_temp)
logger.record_tabular('oicr_loss3', loss_oc3_temp)
logger.record_tabular('step',total_step)
logger.record_tabular('layer_norm/ic_score',record_module.ic_score.weight.data.norm().item())
logger.record_tabular('layer_norm/ic_score0',record_module.ic_score1.weight.data.norm().item())
logger.record_tabular('layer_norm/ic_score1',record_module.ic_score2.weight.data.norm().item())
logger.record_tabular('layer_norm/midn_score0',record_module.midn_score0.weight.data.norm().item())
logger.record_tabular('layer_norm/midn_score1',record_module.midn_score1.weight.data.norm().item())
logger.dump_tabular()
if args.use_tb:
try :
summary.add_value('loss/loss', loss_temp)
summary.add_value('loss/midn_loss', loss_midn_temp)
summary.add_value('loss/oicr_loss', loss_oicr_temp)
summary.add_value('step',total_step)
summary.add_value('layer_norm/ic_score',record_module.ic_score.weight.data.norm())
summary.add_value('layer_norm/ic_score0',record_module.ic_score1.weight.data.norm())
summary.add_value('layer_norm/ic_score1',record_module.ic_score2.weight.data.norm())
summary.add_value('layer_norm/midn_score0',record_module.midn_score0.weight.data.norm())
summary.add_value('layer_norm/midn_score1',record_module.midn_score1.weight.data.norm())
summary.add_hist('layer/ic_score',record_module.ic_score.weight.data)
summary.add_hist('layer/ic_score',record_module.ic_score1.weight.data)
summary.add_hist('layer/ic_score',record_module.ic_score2.weight.data)
summary.add_hist('layer/midn_score0',record_module.midn_score0.weight.data)
summary.add_hist('layer/midn_score1',record_module.midn_score1.weight.data)
# gradients
targets = {'top','ic','midn','base'}
for name, parameter in OICR.named_parameters() :
if parameter.grad is None :
continue
for t in targets :
if t in name :
summary.add_hist('{}_grad/{}'.format(t,name), parameter.grad)
summary.add_value('{}_grad/{}'.format(t,name), parameter.grad.data.norm())
summary.run(total_step)
except :
print("TensorBoard problem")
summary = Summary(sess, log_dir)
loss_temp = 0
loss_midn_temp = 0
loss_oicr_temp = 0
start = time.time()
if total_step % args.checkpoint_interval == 0:
# Out of step
save_name = os.path.join(output_dir, '{:06d}.pth'.format(total_step))
save_checkpoint({
'session': args.session,
'epoch': epoch + 1,
'model': OICR.module.state_dict() if args.mGPUs else OICR.state_dict(),
'optimizer': optimizer.state_dict(),
'pooling_mode': cfg.POOLING_MODE,
'class_agnostic': args.class_agnostic,
}, save_name)
logger.log('save model: {}'.format(save_name))
if vis :
im2show = np.copy(im_data[0]) + cfg.PIXEL_MEANS.reshape((3,1,1))
print(im2show.shape)
#im2show = np.ascontiguousarray(np.transpose(im2show,(1,2,0))[...,::-1])
im2show = np.ascontiguousarray(np.transpose(im2show,(1,2,0)))
scores = rois_label
scores = scores.data
boxes = im_rois.data[:, :, 1:5]
pred_boxes = np.tile(boxes , (1, scores.shape[2]))
pred_boxes = torch.from_numpy(pred_boxes).cuda()
scores = scores[0].squeeze()
pred_boxes = pred_boxes[0].squeeze()
thresh = args.threshold
for j in range(1,imdb.num_classes+1): # changed
inds = torch.nonzero(scores[:,j]>thresh).view(-1)
# if there is det
if inds.numel() > 0:
cls_scores = scores[:,j][inds]
_, order = torch.sort(cls_scores, 0, True)
if args.class_agnostic:
cls_boxes = pred_boxes[inds, :]
else:
cls_boxes = pred_boxes[inds][:, j * 4:(j + 1) * 4]
cls_dets = torch.cat((cls_boxes, cls_scores.unsqueeze(1)), 1) # ERROR cls_boxes is not tensor)
# cls_dets = torch.cat((cls_boxes, cls_scores), 1)
cls_dets = cls_dets[order]
keep = nms(cls_dets, cfg.TEST.NMS)
cls_dets = cls_dets[keep.view(-1).long()]
im2show = vis_detections(im2show, imdb.classes[j-1], cls_dets.cpu().numpy(), thresh ) # changed
# this part makes the output label shift so I do not need to worry about the result
if not os.path.exists(os.path.join(args.save_dir, 'images')) :
os.mkdir(os.path.join(args.save_dir, 'images'))
img_name = os.path.join(args.save_dir,'images/{:06d}.png'.format(total_step))
re = cv2.imwrite(img_name, im2show)
logger.log('image save : {}'.format(img_name))