Skip to content

Latest commit

 

History

History
308 lines (225 loc) · 10.7 KB

README_CN.md

File metadata and controls

308 lines (225 loc) · 10.7 KB

More Than YOLO

TensorFlow & Keras & Python

YOLOv3, YOLOv3-tiny, YOLOv4, YOLOv4-tiny

[非官方]YOLOv4-tiny, YOLOX

requirements: TensorFlow 2.1 (not test on 1.x), OpenCV, Numpy, PyYAML


被训练支配的恐惧 !

  • 因为目前可用的卡是一张游戏卡RTX 2070S(8 G),因此在训练时使用了较小的batch,实际中尽量大batch可以省很多事。
  • 本项目的数据增强均使用在线形式,高级的数据增强方式会大大拖慢训练速度。
  • 训练过程中,Tiny版问题不大,而完整版模型容易NaN或者收敛慢,还在调参中。
  • 增加了支持累计梯度的Adam优化器,类似darknet中subdivisions参数的作用。
  • 在我训练yolov3以及yolov4时,我像往常一样将weight decay设为5e-4时,网络的结果总是那么不尽如人意,这一点困扰了我很久;当我把它调到0时,手里的奶茶又开始变香了。
  • 在原始的tiny版本中,第一个anchor将不使用,这导致了大部分复现结果的差异。[link]

This repository have done:

  • Backbone for YOLO (YOLOv3, YOLOv3-tiny, YOLOv4, YOLOv4-tiny, Unofficial-YOLOv4-tiny)
  • YOLOv3 Head
  • Keras Callbacks for Online Evaluation
  • Load Official Weight File
  • Data Format Converter(COCO and Pascal VOC)
  • K-Means for Anchors
  • Fight with 'NaN'
  • Train (Strategy and Model Config)
    • Define simple training in train.py
    • Use YAML as config file in cfgs
    • Cosine Annealing LR
    • Warm-up LR
    • AccumOptimizer
  • Data Augmentation
    • Standard Method: Random Flip, Random Crop, Zoom, Random Grayscale, Random Distort, Rotate
    • Hight Level: Cut Mix, Mix Up, Mosaic (These Online Augmentations is Slow)
    • More, I can be so much more ...
  • For Loss
    • Label Smoothing
    • Focal Loss
    • L2, D-IoU, G-IoU, C-IoU
    • ...

[toc]

0. 在提问前直接看源码可更好帮助理解

相关的darknet权重可从官方渠道获取: https://github.com/AlexeyAB/darknet/releases 或者 https://pjreddie.com/darknet/yolo/.

1. Samples

1.1 Data File

本项目使用了不同于VOC和COCO的数据存储格式:

path/to/image1 x1,y1,x2,y2,label x1,y1,x2,y2,label 
path/to/image2 x1,y1,x2,y2,label 
...

当然本项目也提供了一个的VOC格式转换脚本和一个COCO格式转换脚本

也可以从其他大佬的项目中看到这种格式的运用,甚至可以得到一个简单的入门级目标检测数据集: https://github.com/YunYang1994/yymnist.

1.2 Configure

# coco_yolov4.yaml
yolo:
  type: "yolov4"  # 当前只能是 'yolov3', 'yolov3_tiny', 'yolov4', 'yolov4_tiny' ‘unofficial_yolov4_tiny’ 和 'yolox'.
  iou_threshold: 0.5
  score_threshold: 0.005
  max_boxes: 100
  strides: "32,16,8"
  anchors: "12,16 19,36 40,28 36,75 76,55 72,146 142,110 192,243 459,401"
  mask: "6,7,8 3,4,5 0,1,2"
  name_path: "./data/coco/coco.name"

train:
  label: "coco_yolov4" # 决定了LOG的根目录名,比较随意
  anno_path: "./data/coco/train2017.txt"
  image_size: "320,352,384,416,448,480,512,544,576,608"  # 当设置为单一值时,比如"416",表示使用单一图像训练尺度; 而"352,384,416,448,480" 则使用动态多尺度训练策略。

  batch_size: 4
  init_weight_path: "./ckpts/yolov4.weights" # 在载入权重前,你需要尽量保证网络结果一致,特别是darknet权重;而使用keras权重时,支持按层名导入。如果你想在官方COCO权重的基础上训练,可以直接使用COCO的网络配置,或者是先将darknet权重转为keras形式(只需向网络载入一次darknet权重,再保存权重就完成了转换)。
  save_weight_path: "./ckpts"

  loss_type: "CIoU+FL" # 支持 "L2", "DIoU", "GIoU", "CIoU",或者以+分格的"L2+FL"开启Focal Loss
  
  # 一些策略的开关
  mosaic: false
  label_smoothing: false
  normal_method: true

  ignore_threshold: 0.7

test:
  anno_path: "./data/coco/val2017.txt"
  image_size: "608" # 验证模型时的图像尺寸
  batch_size: 1 # 占位,还不支持
  init_weight_path: "./ckpts/yolov4.weights"

1.3 K-Means

简单的编辑这一些超参,

# kmeans.py
# Key Parameters
K = 6 # num of clusters
image_size = 416
dataset_path = './data/pascal_voc/train.txt'

1.4 Inference

简单的面向图像、设备以及视频的测试脚本

目前只支持格式 mp4, avi, device id, rtsp, png, jpg (基于OpenCV)

gif

python detector.py --config=./cfgs/coco_yolov4.yaml --media=./misc/street.mp4 --gpu=false

YOLOv4的简单测试

yolov4

from core.utils import decode_cfg, load_weights
from core.model.one_stage.yolov4 import YOLOv4
from core.image import draw_bboxes, preprocess_image, postprocess_image, read_image, Shader

import numpy as np
import cv2
import time

# read config
cfg = decode_cfg('cfgs/coco_yolov4.yaml')
names = cfg['yolo']['names']

model, eval_model = YOLOv4(cfg)
eval_model.summary()

# assign colors for difference labels
shader = Shader(cfg['yolo']['num_classes'])

# load weights
load_weights(model, cfg['test']['init_weight_path'])

img_raw = read_image('./misc/dog.jpg')
img = preprocess_image(img_raw, (512, 512))
imgs = img[np.newaxis, ...]

tic = time.time()
boxes, scores, classes, valid_detections = eval_model.predict(imgs)
toc = time.time()
print((toc - tic)*1000, 'ms')

# for single image, batch size is 1
valid_boxes = boxes[0][:valid_detections[0]]
valid_score = scores[0][:valid_detections[0]]
valid_cls = classes[0][:valid_detections[0]]

img, valid_boxes = postprocess_image(img, img_raw.shape[1::-1], valid_boxes)
img = draw_bboxes(img, valid_boxes, valid_score, valid_cls, names, shader)

cv2.imshow('img', img[..., ::-1])
cv2.imwrite('./misc/dog_v4.jpg', img)
cv2.waitKey()

2. Train

!!! 请先阅读上一节的内容 (e.g. 1.1, 1.2).

python train.py --config=./cfgs/coco_yolov4.yaml

3. Experiment

3.1 Speed

i7-9700F+16GB

Model 416x416 512x512 608x608
YOLOv3 219 ms 320 ms 429 ms
YOLOv3-tiny 49 ms 63 ms 78 ms
YOLOv4 344 ms 490 ms 682 ms
YOLOv4-tiny 51 ms 66 ms 83 ms
Unofficial-YOLOv4-tiny 64 ms 86 ms 110 ms
YOLOX 67 ms 83 ms 104 ms

i7-9700F+16GB / RTX 2070S+8G

Model 416x416 512x512 608x608
YOLOv3 59 ms 66 ms 83 ms
YOLOv3-tiny 28 ms 30 ms 33 ms
YOLOv4 73 ms 74 ms 91 ms
YOLOv4-tiny 30 ms 32 ms 35 ms
Unofficial-YOLOv4-tiny 30 ms 31 ms 34 ms
YOLOx 42 ms 45 ms 50 ms

3.2 Logs

Augmentations

Name Abbr
Standard Method SM
Dynamic Mini Batch Size DM
Label Smoothing LS
Focal Loss FL
Mosaic M
Warm-up LR W
Cosine Annealing LR CA

Standard Method Package 包括 Flip left and right, Crop and Zoom(jitter=0.3), Grayscale, Distort, Rotate(angle=7).

YOLOv3-tiny(Pretrained on COCO; Trained on VOC)

SM DM LS FL M Loss AP AP@50 AP@75
L2 26.6 61.8 17.2
L2 27.3 62.4 17.9
L2 26.7 61.7 17.1
CIoU 30.9 64.2 25.0
CIoU 32.3 65.7 27.6
CIoU

YOLOv3(TODO; Pretrained on COCO; Trained on VOC; only 15 epochs)

SM DM LS FL M Loss AP AP@50 AP@75
CIoU 46.5 80.0 49.0
CIoU

YOLOv4-tiny(TODO; Pretrained on COCO, part of YOLOv3-tiny weights; Trained on VOC)

SM DM LS FL M Loss AP AP@50 AP@75
CIoU 35.1 70.2 30.0
CIoU

YOLOv4(TODO; Pretrained on COCO; Trained on VOC)

SM DM LS FL M Loss AP AP@50 AP@75
CIoU
CIoU

Unofficial-YOLOv4-tiny(TODO; Pretrained on COCO, part of YOLOv3-tiny weights; Trained on VOC)

SM DM LS FL M Loss AP AP@50 AP@75
CIoU 35.0 65.7 33.8
CIoU

YOLOX(TODO; Pretrained on COCO, part of YOLOv4-tiny weights; Trained on VOC)

SM DM LS FL M Loss AP AP@50 AP@75
CIoU 40.6 72.2 40.3
CIoU

3.3 训练细节

Tiny Version

Stage Freeze Backbone LR Steps
0 Yes 1e-3 (w/ W) 4000
1 Yes - 32*4000
2 No 1e-3 to 1e-6 (w/ CA) 48*4000

Common Version

Stage Freeze Backbone LR Steps
0 Yes 1e-3 (w/ W) 4000
1 Yes - 80*4000
2 No 1e-3 to 1e-6 (w/ CA) 120*4000

训练完整的网络实在太费时间。

4. Reference

5. History