-
Notifications
You must be signed in to change notification settings - Fork 17
/
Copy pathocean.glsl
347 lines (277 loc) · 12.8 KB
/
ocean.glsl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
#ifdef HARDWARE_ANISTROPIC_FILTERING
#extension GL_EXT_gpu_shader4 : enable
#endif
/**
* Real-time Realistic Ocean Lighting using Seamless Transitions from Geometry to BRDF
* Copyright (c) 2009 INRIA
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the name of the copyright holders nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
* THE POSSIBILITY OF SUCH DAMAGE.
*/
/**
* Authors: Eric Bruneton & Jonathan Dupuy
*/
#define LAYER_HEIGHT 0.0
#define LAYER_JACOBIAN_XX 5.0
#define LAYER_JACOBIAN_YY 6.0
#define LAYER_JACOBIAN_XY 7.0
uniform mat4 screenToCamera; // screen space to camera space
uniform mat4 cameraToWorld; // camera space to world space
uniform mat4 worldToScreen; // world space to screen space
uniform mat4 worldDirToScreen; // world space to screen space
uniform mat4 modelView; // modelViewMatrix
uniform vec3 worldCamera; // camera position in world space
uniform vec3 worldSunDir; // sun direction in world space
uniform vec2 gridSize;
uniform float normals;
uniform float choppy;
uniform vec4 choppy_factor;
uniform float jacobian_scale;
uniform sampler2DArray fftWavesSampler; // ocean surface
uniform sampler2DArray foamDistribution;
uniform vec4 GRID_SIZES;
uniform sampler3D slopeVarianceSampler;
uniform vec3 seaColor; // sea bottom color
varying vec2 u; // horizontal coordinates in world space used to compute P(u)
varying vec3 P; // wave point P(u) in world space
#ifdef _VERTEX_
vec2 oceanPos(vec4 vertex) {
vec3 cameraDir = normalize((screenToCamera * vertex).xyz);
vec3 worldDir = (cameraToWorld * vec4(cameraDir, 0.0)).xyz;
float t = -worldCamera.z / worldDir.z;
return worldCamera.xy + t * worldDir.xy;
}
void main() {
u = oceanPos(gl_Vertex);
vec2 ux = oceanPos(gl_Vertex + vec4(gridSize.x, 0.0, 0.0, 0.0));
vec2 uy = oceanPos(gl_Vertex + vec4(0.0, gridSize.y, 0.0, 0.0));
vec2 dux = ux - u;
vec2 duy = uy - u;
// sum altitudes (use grad to get correct mipmap level)
vec3 dP = vec3(0.0);
dP.z += texture2DArrayGrad(fftWavesSampler, vec3(u / GRID_SIZES.x, LAYER_HEIGHT), dux / GRID_SIZES.x, duy / GRID_SIZES.x).x;
dP.z += texture2DArrayGrad(fftWavesSampler, vec3(u / GRID_SIZES.y, LAYER_HEIGHT), dux / GRID_SIZES.y, duy / GRID_SIZES.y).y;
dP.z += texture2DArrayGrad(fftWavesSampler, vec3(u / GRID_SIZES.z, LAYER_HEIGHT), dux / GRID_SIZES.z, duy / GRID_SIZES.z).z;
dP.z += texture2DArrayGrad(fftWavesSampler, vec3(u / GRID_SIZES.w, LAYER_HEIGHT), dux / GRID_SIZES.w, duy / GRID_SIZES.w).w;
// choppy
if (choppy > 0.0) {
dP.xy += choppy_factor.x*texture2DArrayGrad(fftWavesSampler, vec3(u / GRID_SIZES.x, 3.0), dux / GRID_SIZES.x, duy / GRID_SIZES.x).xy;
dP.xy += choppy_factor.y*texture2DArrayGrad(fftWavesSampler, vec3(u / GRID_SIZES.y, 3.0), dux / GRID_SIZES.y, duy / GRID_SIZES.y).zw;
dP.xy += choppy_factor.z*texture2DArrayGrad(fftWavesSampler, vec3(u / GRID_SIZES.z, 4.0), dux / GRID_SIZES.z, duy / GRID_SIZES.z).xy;
dP.xy += choppy_factor.w*texture2DArrayGrad(fftWavesSampler, vec3(u / GRID_SIZES.w, 4.0), dux / GRID_SIZES.w, duy / GRID_SIZES.w).zw;
}
P = vec3(u + dP.xy, dP.z);
// Final position
gl_Position = worldToScreen * vec4(P, 1.0);
}
#endif
#ifdef _FRAGMENT_
// ---------------------------------------------------------------------------
// REFLECTED SUN RADIANCE
// ---------------------------------------------------------------------------
// assumes x>0
float erfc(float x) {
return 2.0 * exp(-x * x) / (2.319 * x + sqrt(4.0 + 1.52 * x * x));
}
float erf(float x) {
float a = 0.140012;
float x2 = x*x;
float ax2 = a*x2;
return sign(x) * sqrt( 1.0 - exp(-x2*(4.0/M_PI + ax2)/(1.0 + ax2)) );
}
float Lambda(float cosTheta, float sigmaSq) {
float v = cosTheta / sqrt((1.0 - cosTheta * cosTheta) * (2.0 * sigmaSq));
return max(0.0, (exp(-v * v) - v * sqrt(M_PI) * erfc(v)) / (2.0 * v * sqrt(M_PI)));
//return (exp(-v * v)) / (2.0 * v * sqrt(M_PI)); // approximate, faster formula
}
// L, V, N, Tx, Ty in world space
float reflectedSunRadiance(vec3 L, vec3 V, vec3 N, vec3 Tx, vec3 Ty, vec2 sigmaSq) {
vec3 H = normalize(L + V);
float zetax = dot(H, Tx) / dot(H, N);
float zetay = dot(H, Ty) / dot(H, N);
float zL = dot(L, N); // cos of source zenith angle
float zV = dot(V, N); // cos of receiver zenith angle
float zH = dot(H, N); // cos of facet normal zenith angle
float zH2 = zH * zH;
float p = exp(-0.5 * (zetax * zetax / sigmaSq.x + zetay * zetay / sigmaSq.y))
/ (2.0 * M_PI * sqrt(sigmaSq.x * sigmaSq.y));
float tanV = atan(dot(V, Ty), dot(V, Tx));
float cosV2 = 1.0 / (1.0 + tanV * tanV);
float sigmaV2 = sigmaSq.x * cosV2 + sigmaSq.y * (1.0 - cosV2);
float tanL = atan(dot(L, Ty), dot(L, Tx));
float cosL2 = 1.0 / (1.0 + tanL * tanL);
float sigmaL2 = sigmaSq.x * cosL2 + sigmaSq.y * (1.0 - cosL2);
float fresnel = 0.02 + 0.98 * pow(1.0 - dot(V, H), 5.0);
zL = max(zL, 0.01);
zV = max(zV, 0.01);
return fresnel * p / ((1.0 + Lambda(zL, sigmaL2) + Lambda(zV, sigmaV2)) * zV * zH2 * zH2 * 4.0);
}
// ---------------------------------------------------------------------------
// REFLECTED SKY RADIANCE
// ---------------------------------------------------------------------------
// manual anisotropic filter
vec4 myTexture2DGrad(sampler2D tex, vec2 u, vec2 s, vec2 t)
{
const float TEX_SIZE = 512.0; // 'tex' size in pixels
const int N = 1; // use (2*N+1)^2 samples
vec4 r = vec4(0.0);
float l = max(0.0, log2(max(length(s), length(t)) * TEX_SIZE) - 0.0);
for (int i = -N; i <= N; ++i) {
for (int j = -N; j <= N; ++j) {
r += texture2DLod(tex, u + (s * float(i) + t * float(j)) / float(N), l);
}
}
return r / pow(2.0 * float(N) + 1.0, 2.0);
}
// V, N, Tx, Ty in world space
vec2 U(vec2 zeta, vec3 V, vec3 N, vec3 Tx, vec3 Ty) {
vec3 f = normalize(vec3(-zeta, 1.0)); // tangent space
vec3 F = f.x * Tx + f.y * Ty + f.z * N; // world space
vec3 R = 2.0 * dot(F, V) * F - V;
return R.xy / (1.0 + R.z);
}
float meanFresnel(float cosThetaV, float sigmaV) {
return pow(1.0 - cosThetaV, 5.0 * exp(-2.69 * sigmaV)) / (1.0 + 22.7 * pow(sigmaV, 1.5));
}
// V, N in world space
float meanFresnel(vec3 V, vec3 N, vec2 sigmaSq) {
vec2 v = V.xy; // view direction in wind space
vec2 t = v * v / (1.0 - V.z * V.z); // cos^2 and sin^2 of view direction
float sigmaV2 = dot(t, sigmaSq); // slope variance in view direction
return meanFresnel(dot(V, N), sqrt(sigmaV2));
}
// V, N, Tx, Ty in world space;
vec3 meanSkyRadiance(vec3 V, vec3 N, vec3 Tx, vec3 Ty, vec2 sigmaSq) {
vec4 result = vec4(0.0);
const float eps = 0.001;
vec2 u0 = U(vec2(0.0), V, N, Tx, Ty);
vec2 dux = 2.0 * (U(vec2(eps, 0.0), V, N, Tx, Ty) - u0) / eps * sqrt(sigmaSq.x);
vec2 duy = 2.0 * (U(vec2(0.0, eps), V, N, Tx, Ty) - u0) / eps * sqrt(sigmaSq.y);
#ifdef HARDWARE_ANISTROPIC_FILTERING
result = texture2DGrad(skySampler, u0 * (0.5 / 1.1) + 0.5, dux * (0.5 / 1.1), duy * (0.5 / 1.1));
#else
result = myTexture2DGrad(skySampler, u0 * (0.5 / 1.1) + 0.5, dux * (0.5 / 1.1), duy * (0.5 / 1.1));
#endif
//if texture2DLod and texture2DGrad are not defined, you can use this (no filtering):
//result = texture2D(skySampler, u0 * (0.5 / 1.1) + 0.5);
return result.rgb;
}
// ----------------------------------------------------------------------------
float whitecapCoverage(float epsilon, float mu, float sigma2) {
return 0.5*erf((0.5*sqrt(2.0)*(epsilon-mu)*inversesqrt(sigma2))) + 0.5;
}
void main() {
vec3 V = normalize(worldCamera - P);
vec2 slopes = texture2DArray(fftWavesSampler, vec3(u / GRID_SIZES.x, 1.0)).xy;
slopes += texture2DArray(fftWavesSampler, vec3(u / GRID_SIZES.y, 1.0)).zw;
slopes += texture2DArray(fftWavesSampler, vec3(u / GRID_SIZES.z, 2.0)).xy;
slopes += texture2DArray(fftWavesSampler, vec3(u / GRID_SIZES.w, 2.0)).zw;
if(choppy > 0.0)
{
float Jxx, Jxy, Jyy;
vec4 lambda = choppy_factor;
// Jxx1..4 : partial Jxx
float Jxx1 = texture2DArray(fftWavesSampler, vec3(u / GRID_SIZES.x, LAYER_JACOBIAN_XX)).r;
float Jxx2 = texture2DArray(fftWavesSampler, vec3(u / GRID_SIZES.y, LAYER_JACOBIAN_XX)).g;
float Jxx3 = texture2DArray(fftWavesSampler, vec3(u / GRID_SIZES.z, LAYER_JACOBIAN_XX)).b;
float Jxx4 = texture2DArray(fftWavesSampler, vec3(u / GRID_SIZES.w, LAYER_JACOBIAN_XX)).a;
Jxx = dot((lambda), vec4(Jxx1,Jxx2,Jxx3,Jxx4));
// Jyy1..4 : partial Jyy
float Jyy1 = texture2DArray(fftWavesSampler, vec3(u / GRID_SIZES.x, LAYER_JACOBIAN_YY)).r;
float Jyy2 = texture2DArray(fftWavesSampler, vec3(u / GRID_SIZES.y, LAYER_JACOBIAN_YY)).g;
float Jyy3 = texture2DArray(fftWavesSampler, vec3(u / GRID_SIZES.z, LAYER_JACOBIAN_YY)).b;
float Jyy4 = texture2DArray(fftWavesSampler, vec3(u / GRID_SIZES.w, LAYER_JACOBIAN_YY)).a;
Jyy = dot((lambda), vec4(Jyy1,Jyy2,Jyy3,Jyy4));
slopes /= (1.0 + vec2(Jxx, Jyy));
}
vec3 N = normalize(vec3(-slopes.x, -slopes.y, 1.0));
if (dot(V, N) < 0.0) {
N = reflect(N, V); // reflects backfacing normals
}
float Jxx = dFdx(u.x);
float Jxy = dFdy(u.x);
float Jyx = dFdx(u.y);
float Jyy = dFdy(u.y);
float A = Jxx * Jxx + Jyx * Jyx;
float B = Jxx * Jxy + Jyx * Jyy;
float C = Jxy * Jxy + Jyy * Jyy;
const float SCALE = 10.0;
float ua = pow(A / SCALE, 0.25);
float ub = 0.5 + 0.5 * B / sqrt(A * C);
float uc = pow(C / SCALE, 0.25);
vec2 sigmaSq = texture3D(slopeVarianceSampler, vec3(ua, ub, uc)).xw;
sigmaSq = max(sigmaSq, 2e-5);
vec3 Ty = normalize(vec3(0.0, N.z, -N.y));
vec3 Tx = cross(Ty, N);
vec3 Rf = vec3(0.0);
vec3 Rs = vec3(0.0);
vec3 Ru = vec3(0.0);
#if defined(SEA_CONTRIB) || defined(SKY_CONTRIB)
float fresnel = 0.02 + 0.98 * meanFresnel(V, N, sigmaSq);
#endif
vec3 Lsun;
vec3 Esky;
vec3 extinction;
sunRadianceAndSkyIrradiance(worldCamera + earthPos, worldSunDir, Lsun, Esky);
gl_FragColor = vec4(0.0);
#ifdef SUN_CONTRIB
Rs += reflectedSunRadiance(worldSunDir, V, N, Tx, Ty, sigmaSq) * Lsun;
gl_FragColor.rgb = Rs;
#endif
#ifdef SKY_CONTRIB
Rs += fresnel * meanSkyRadiance(V, N, Tx, Ty, sigmaSq);
gl_FragColor.rgb = Rs;
#endif
#ifdef SEA_CONTRIB
vec3 Lsea = seaColor * Esky / M_PI;
Ru += (1.0 - fresnel) * Lsea;
gl_FragColor.rgb += Ru;
#endif
#ifdef FOAM_CONTRIB
// extract mean and variance of the jacobian matrix determinant
vec2 jm1 = texture2DArray(foamDistribution, vec3(u / GRID_SIZES.x, 2.0)).rg;
vec2 jm2 = texture2DArray(foamDistribution, vec3(u / GRID_SIZES.y, 2.0)).ba;
vec2 jm3 = texture2DArray(foamDistribution, vec3(u / GRID_SIZES.z, 3.0)).rg;
vec2 jm4 = texture2DArray(foamDistribution, vec3(u / GRID_SIZES.w, 3.0)).ba;
vec2 jm = jm1+jm2+jm3+jm4;
float jSigma2 = max(jm.y - (jm1.x*jm1.x + jm2.x*jm2.x + jm3.x*jm3.x + jm4.x*jm4.x), 0.0);
// get coverage
float W = whitecapCoverage(jacobian_scale,jm.x,jSigma2);
// compute and add whitecap radiance
vec3 l = (Lsun * (max(dot(N, worldSunDir), 0.0)) + Esky) / M_PI;
vec3 R_ftot = vec3(W * l * 0.4);
gl_FragColor.rgb += R_ftot;
#endif
#if !defined(SEA_CONTRIB) && !defined(SKY_CONTRIB) && !defined(SUN_CONTRIB) && !defined(FOAM_CONTRIB)
Rs = 0.0001 * seaColor * (Lsun * max(dot(N, worldSunDir), 0.0) + Esky) / M_PI;
gl_FragColor.rgb = Rs;
#endif
gl_FragColor.rgb = hdr(gl_FragColor.rgb);
// render normals
if (normals > 0.0) {
gl_FragColor.rgb = abs(N);
}
}
#endif