-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathbasecall_no_metrichor.py
277 lines (243 loc) · 8.4 KB
/
basecall_no_metrichor.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
import argparse
from rnn_fin import RnnPredictor
import h5py
import sys
import numpy as np
import theano as th
import os
import re
import dateutil.parser
import datetime
from helpers import *
import subprocess
import time
def get_scaling_template(events, has_std):
down = 48.4631279889
up = 65.7312554591
our_down = np.percentile(events["mean"], 10)
our_up = np.percentile(events["mean"], 90)
scale = (our_up - our_down) / (up - down)
shift = (our_up / scale - up) * scale
sd = 0.807981325017
if has_std:
return scale, np.percentile(events["stdv"], 50) / sd, shift
else:
return scale, np.sqrt(np.percentile(events["variance"], 50)) / sd, shift
def get_scaling_complement(events, has_std):
down = 49.2638926877
up = 69.0192568072
our_down = np.percentile(events["mean"], 10)
our_up = np.percentile(events["mean"], 90)
scale = (our_up - our_down) / (up - down)
shift = (our_up / scale - up) * scale
sd = 1.04324844612
if has_std:
return scale, np.percentile(events["stdv"], 50) / sd, shift
else:
return scale, np.sqrt(np.percentile(events["variance"], 50)) / sd, shift
def template_complement_loc(events):
abasic_level = np.percentile(events["mean"], 99) + 5
abasic_locs = (events["mean"] > abasic_level).nonzero()[0]
last = -47
run_len = 1
runs = []
for x in abasic_locs:
if x - last == 1:
run_len += 1
else:
if run_len >= 5:
if len(runs) and last - runs[-1][0] < 50:
run_len = last - runs[-1][0]
run_len += runs[-1][1]
runs[-1] = (last, run_len)
else:
runs.append((last, run_len))
run_len = 1
last = x
to_sort = []
mid = len(events) / 2
low_third = len(events) / 3
high_third = len(events) / 3 * 2
for r in runs:
if r[0] < low_third:
continue
if r[0] > high_third:
continue
to_sort.append((abs(r[0] - mid), r[0] - r[1], r[0]))
to_sort.sort()
if len(to_sort) == 0:
return None
trim_size = 10
return {"temp": (trim_size, to_sort[0][1] - trim_size),
"comp": (to_sort[0][2] + trim_size, len(events) - trim_size)}
def load_read_data(read_file):
h5 = h5py.File(read_file, "r")
ret = {}
read_key = h5["Analyses/EventDetection_000/Reads"].keys()[0]
base_events = h5["Analyses/EventDetection_000/Reads"][read_key]["Events"]
temp_comp_loc = template_complement_loc(base_events)
sampling_rate = h5["UniqueGlobalKey/channel_id"].attrs["sampling_rate"]
if temp_comp_loc:
events = base_events[temp_comp_loc["temp"][0]:temp_comp_loc["temp"][1]]
else:
events = base_events
has_std = True
try:
std = events[0]["stdv"]
except:
has_std = False
tscale2, tscale_sd2, tshift2 = get_scaling_template(events, has_std)
index = 0.0
ret["temp_events2"] = []
for e in events:
mean = (e["mean"] - tshift2) / tscale2
if has_std:
stdv = e["stdv"] / tscale_sd2
else:
stdv = np.sqrt(e["variance"]) / tscale_sd2
length = e["length"] / sampling_rate
ret["temp_events2"].append(preproc_event(mean, stdv, length))
ret["temp_events2"] = np.array(ret["temp_events2"], dtype=np.float32)
if not temp_comp_loc:
return ret
events = base_events[temp_comp_loc["comp"][0]:temp_comp_loc["comp"][1]]
cscale2, cscale_sd2, cshift2 = get_scaling_complement(events, has_std)
index = 0.0
ret["comp_events2"] = []
for e in events:
mean = (e["mean"] - cshift2) / cscale2
if has_std:
stdv = e["stdv"] / cscale_sd2
else:
stdv = np.sqrt(e["variance"]) / cscale_sd2
length = e["length"] / sampling_rate
ret["comp_events2"].append(preproc_event(mean, stdv, length))
ret["comp_events2"] = np.array(ret["comp_events2"], dtype=np.float32)
return ret
def basecall(read_file_name, fo):
basename = os.path.basename(read_file_name)
try:
data = load_read_data(read_file_name)
except Exception as e:
print e
print "error at file", read_file_name
return
if do_template or do_2d:
o1, o2 = predict_and_write(
data["temp_events2"], temp_net,
fo if do_template else None,
"%s_template_rnn" % basename)
if (do_complement or do_2d) and "comp_events2" in data:
o1c, o2c = predict_and_write(
data["comp_events2"], comp_net,
fo if do_complement else None,
"%s_complement_rnn" % basename)
if do_2d and "comp_events2" in data and\
len(data["comp_events2"]) <= args.max_2d_length and\
len(data["temp_events2"]) <= args.max_2d_length:
p = subprocess.Popen("./align_2d", stdin=subprocess.PIPE, stdout=subprocess.PIPE)
f2d = p.stdin
print >>f2d, len(o1)+len(o2)
for a, b in zip(o1, o2):
print >>f2d, " ".join(map(str, a))
print >>f2d, " ".join(map(str, b))
print >>f2d, len(o1c)+len(o2c)
for a, b in zip(o1c, o2c):
print >>f2d, " ".join(map(str, a))
print >>f2d, " ".join(map(str, b))
f2do, f2de = p.communicate()
if p.returncode != 0:
return
lines = f2do.strip().split('\n')
print >>fo, ">%s_2d_rnn_simple" % basename
print >>fo, lines[0].strip()
events_2d = []
for l in lines[1:]:
temp_ind, comp_ind = map(int, l.strip().split())
e = []
if temp_ind == -1:
e += [0, 0, 0, 0, 0]
else:
e += [1] + list(data["temp_events2"][temp_ind])
if comp_ind == -1:
e += [0, 0, 0, 0, 0]
else:
e += [1] + list(data["comp_events2"][comp_ind])
events_2d.append(e)
events_2d = np.array(events_2d, dtype=np.float32)
if len(events_2d) >= 5:
predict_and_write(events_2d, big_net, fo, "%s_2d_rnn" % basename)
parser = argparse.ArgumentParser()
parser.add_argument('--template_net', type=str, default="nets_data/map6temp.npz")
parser.add_argument('--complement_net', type=str, default="nets_data/map6comp.npz")
parser.add_argument('--big_net', type=str, default="nets_data/map6-2d-no-metr23.npz")
parser.add_argument('--max_2d_length', type=int, default=10000, help='Max length for 2d basecall')
parser.add_argument('reads', type=str, nargs='*')
parser.add_argument('--type', type=str, default="all", help="One of: template, complement, 2d, all, use comma to separate multiple options, eg.: template,complement")
parser.add_argument('--output', type=str, default="output.fasta")
parser.add_argument('--directory', type=str, default='', help="Directory where read files are stored")
parser.add_argument('--watch', type=str, default='', help='Watched directory')
args = parser.parse_args()
types = args.type.split(',')
do_template = False
do_complement = False
do_2d = False
if "all" in types or "template" in types:
do_template = True
if "all" in types or "complement" in types:
do_complement = True
if "all" in types or "2d" in types:
do_2d = True
assert do_template or do_complement or do_2d, "Nothing to do"
assert len(args.reads) != 0 or len(args.directory) != 0 or len(args.watch) != 0, "Nothing to basecall"
if do_template or do_2d:
print "loading template net"
temp_net = RnnPredictor(args.template_net)
print "done"
if do_complement or do_2d:
print "loading complement net"
comp_net = RnnPredictor(args.complement_net)
print "done"
if do_2d:
print "loading 2D net"
big_net = RnnPredictor(args.big_net)
print "done"
chars = "ACGT"
mapping = {"A": 0, "C": 1, "G": 2, "T": 3, "N": 4}
if len(args.reads) or len(args.directory) != 0:
fo = open(args.output, "w")
files = args.reads
if len(args.directory):
files += [os.path.join(args.directory, x) for x in os.listdir(args.directory)]
for i, read in enumerate(files):
basecall(read, fo)
fo.close()
if len(args.watch) != 0:
try:
from watchdog.observers import Observer
from watchdog.events import PatternMatchingEventHandler
except:
print "Please install watchdog to watch directories"
sys.exit()
class Fast5Handler(PatternMatchingEventHandler):
"""Class for handling creation fo fast5-files"""
patterns = ["*.fast5"]
def on_created(self, event):
print "Calling", event
file_name = str(os.path.basename(event.src_path))
fasta_file_name = os.path.splitext(event.src_path)[0] + '.fasta'
with open(fasta_file_name, "w") as fo:
basecall(event.src_path, fo)
print('Watch dir: ' + args.watch)
observer = Observer()
print('Starting Observerer')
# start watching directory for fast5-files
observer.start()
observer.schedule(Fast5Handler(), path=args.watch)
try:
while True:
time.sleep(1)
# quit script using ctrl+c
except KeyboardInterrupt:
observer.stop()
observer.join()