-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodelbuild.sh
executable file
·1378 lines (1248 loc) · 68.6 KB
/
modelbuild.sh
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
#!/bin/bash
# ARG_HELP([A qbatch enabled, optimal registration pyramid based re-implementaiton of antsMultivariateTemplateConstruction2.sh])
# ARG_OPTIONAL_SINGLE([output-dir],[],[Output directory for modelbuild],[output])
# ARG_OPTIONAL_SINGLE([gradient-step],[],[Gradient scaling step during template warping, can be a comma separated list same length as number of iterations],[0.25])
# ARG_OPTIONAL_SINGLE([starting-target],[],[Starting target, dumb average (dumb), align all inputs using their center-of-mass before averaging (com) use the first input (first), or an external file (provide path)],[first])
# ARG_OPTIONAL_SINGLE([starting-target-mask],[],[Mask for starting target if a file],[])
# ARG_OPTIONAL_SINGLE([starting-average-resolution],[],[If no starting target is provided, an average is constructed from all inputs, resample average to a target resolution MxNxO before modelbuild],[])
# ARG_OPTIONAL_SINGLE([iterations],[],[Number of iterations of model building per stage],[4])
# ARG_OPTIONAL_SINGLE([convergence],[],[Convergence limit during registration calls],[1e-7])
# ARG_OPTIONAL_SINGLE([syn-shrink-factors],[],[Shrink factors for Non-linear (SyN) stages, provide to override automatic generation, must be provided with sigmas and convergence],[])
# ARG_OPTIONAL_SINGLE([syn-smoothing-sigmas],[],[Smoothing sigmas for Non-linear (SyN) stages, provide to override automatic generation, must be provided with shrinks and convergence],[])
# ARG_OPTIONAL_SINGLE([syn-convergence],[],[Convergence levels for Non-linear (SyN) stages, provide to override automatic generation, must be provided with shrinks and sigmas],[])
# ARG_OPTIONAL_SINGLE([syn-control],[],[Non-linear (SyN) gradient and regularization parameters, not checked for correctness],[0.1,3,0])
# ARG_OPTIONAL_SINGLE([linear-shrink-factors],[],[Shrink factors for linear stages, provide to override automatic generation, must be provided with sigmas and convergence],[])
# ARG_OPTIONAL_SINGLE([linear-smoothing-sigmas],[],[Smoothing sigmas for linear stages, provide to override automatic generation, must be provided with shrinks and convergence],[])
# ARG_OPTIONAL_SINGLE([linear-convergence],[],[Convergence levels for linear stages, provide to override automatic generation, must be provided with shrinks and sigmas],[])
# ARG_OPTIONAL_BOOLEAN([float],[],[Use float instead of double for calculations (reduce memory requirements)],[])
# ARG_OPTIONAL_BOOLEAN([fast],[],[Run SyN registration with Mattes instead of CC],[])
# ARG_OPTIONAL_SINGLE([average-type],[],[Type of averaging to apply during modelbuild],[mean])
# ARG_OPTIONAL_SINGLE([average-prog],[],[Software to use for averaging images and transforms\n python with SimpleITK needed for trimmed_mean, efficient_trimean, and huber],[ANTs])
# ARG_OPTIONAL_BOOLEAN([average-norm],[],[Normalize images by their mean before averaging],[on])
# ARG_OPTIONAL_BOOLEAN([nlin-shape-update],[],[Perform nlin shape update, disable to switch to a forward-only modelbuild],[on])
# ARG_OPTIONAL_BOOLEAN([affine-shape-update],[],[Scale template by inverse of average affine transforms during shape update step],[on])
# ARG_OPTIONAL_BOOLEAN([scale-affines],[],[Apply gradient step scaling factor to average affine during shape update step, requires python with VTK and SimpleITK],[])
# ARG_OPTIONAL_BOOLEAN([rigid-update],[],[Include rigid component of transform when performing shape update on template (disable if template drifts in translation or orientation)],[])
# ARG_TYPE_GROUP_SET([averagetype],[AVERAGE],[average-type],[mean,median,trimmed_mean,efficient_trimean,huber])
# ARG_TYPE_GROUP_SET([averageprogtype],[PROG],[average-prog],[ANTs,python])
# ARG_OPTIONAL_SINGLE([sharpen-type],[],[Type of sharpening applied to average during modelbuild],[unsharp])
# ARG_TYPE_GROUP_SET([sharptypetype],[SHARPEN],[sharpen-type],[none,laplacian,unsharp])
# ARG_OPTIONAL_SINGLE([masks],[],[File containing mask filenames, one file per line],[])
# ARG_OPTIONAL_BOOLEAN([mask-extract],[],[Use masks to extract images before registration],[])
# ARG_OPTIONAL_SINGLE([mask-merge-threshold],[],[Threshold to combine masks during averaging],[0.5])
# ARG_OPTIONAL_SINGLE([stages],[],[Stages of modelbuild used (comma separated options: 'rigid' 'similarity' 'affine' 'nlin' 'nlin-only','volgenmodel-nlin'), append a number in brackets 'rigid[n]' to override global iteration setting],[rigid,similarity,affine,nlin])
# ARG_OPTIONAL_BOOLEAN([reuse-affines],[],[Reuse affines from previous stage/iteration to initialize next stage],[off])
# ARG_OPTIONAL_SINGLE([final-target],[],[Perform a final registration between the average and final target, used in postprocessing],[none])
# ARG_OPTIONAL_SINGLE([final-target-mask],[],[Mask for the final target used in postprocessing],[none])
# ARG_OPTIONAL_SINGLE([walltime-short],[],[Walltime for short running stages (averaging, resampling)],[00:30:00])
# ARG_OPTIONAL_SINGLE([walltime-linear],[],[Walltime for linear registration stages],[0:45:00])
# ARG_OPTIONAL_SINGLE([walltime-nonlinear],[],[Walltime for nonlinear registration stages],[4:30:00])
# ARG_OPTIONAL_SINGLE([jobname-prefix],[],[Prefix to add to front of job names, used by twolevel wrapper],[])
# ARG_OPTIONAL_SINGLE([job-predepend],[],[Job name dependency pattern to prepend to all jobs, used by twolevel wrapper],[])
# ARG_OPTIONAL_BOOLEAN([skip-file-checks],[],[Skip preflight checking of existence of files, used by twolevel wrapper],[])
# ARG_OPTIONAL_BOOLEAN([block],[],[For SGE, PBS and SLURM, blocks execution until jobs are finished.],[])
# ARG_OPTIONAL_BOOLEAN([debug],[],[Debug mode, print all commands to stdout],[])
# ARG_OPTIONAL_BOOLEAN([dry-run],[],[Dry run, don't run any commands, implies debug],[])
# ARG_POSITIONAL_INF([inputs],[Input text file, one line per input],[1])
# ARGBASH_SET_INDENT([ ])
# ARGBASH_GO()
# needed because of Argbash --> m4_ignore([
### START OF CODE GENERATED BY Argbash v2.10.0 one line above ###
# Argbash is a bash code generator used to get arguments parsing right.
# Argbash is FREE SOFTWARE, see https://argbash.io for more info
die()
{
local _ret="${2:-1}"
test "${_PRINT_HELP:-no}" = yes && print_help >&2
echo "$1" >&2
exit "${_ret}"
}
# validators
averagetype()
{
local _allowed=("mean" "median" "trimmed_mean" "efficient_trimean" "huber") _seeking="$1"
for element in "${_allowed[@]}"
do
test "$element" = "$_seeking" && echo "$element" && return 0
done
die "Value '$_seeking' (of argument '$2') doesn't match the list of allowed values: 'mean', 'median', 'trimmed_mean', 'efficient_trimean' and 'huber'" 4
}
averageprogtype()
{
local _allowed=("ANTs" "python") _seeking="$1"
for element in "${_allowed[@]}"
do
test "$element" = "$_seeking" && echo "$element" && return 0
done
die "Value '$_seeking' (of argument '$2') doesn't match the list of allowed values: 'ANTs' and 'python'" 4
}
sharptypetype()
{
local _allowed=("none" "laplacian" "unsharp") _seeking="$1"
for element in "${_allowed[@]}"
do
test "$element" = "$_seeking" && echo "$element" && return 0
done
die "Value '$_seeking' (of argument '$2') doesn't match the list of allowed values: 'none', 'laplacian' and 'unsharp'" 4
}
begins_with_short_option()
{
local first_option all_short_options='h'
first_option="${1:0:1}"
test "$all_short_options" = "${all_short_options/$first_option/}" && return 1 || return 0
}
# THE DEFAULTS INITIALIZATION - POSITIONALS
_positionals=()
_arg_inputs=('' )
# THE DEFAULTS INITIALIZATION - OPTIONALS
_arg_output_dir="output"
_arg_gradient_step="0.25"
_arg_starting_target="first"
_arg_starting_target_mask=
_arg_starting_average_resolution=
_arg_iterations="4"
_arg_convergence="1e-7"
_arg_syn_shrink_factors=
_arg_syn_smoothing_sigmas=
_arg_syn_convergence=
_arg_syn_control="0.1,3,0"
_arg_linear_shrink_factors=
_arg_linear_smoothing_sigmas=
_arg_linear_convergence=
_arg_float="off"
_arg_fast="off"
_arg_average_type="mean"
_arg_average_prog="ANTs"
_arg_average_norm="on"
_arg_nlin_shape_update="on"
_arg_affine_shape_update="on"
_arg_scale_affines="off"
_arg_rigid_update="off"
_arg_sharpen_type="unsharp"
_arg_masks=
_arg_mask_extract="off"
_arg_mask_merge_threshold="0.5"
_arg_stages="rigid,similarity,affine,nlin"
_arg_reuse_affines="off"
_arg_final_target="none"
_arg_final_target_mask="none"
_arg_walltime_short="00:30:00"
_arg_walltime_linear="0:45:00"
_arg_walltime_nonlinear="4:30:00"
_arg_jobname_prefix=
_arg_job_predepend=
_arg_skip_file_checks="off"
_arg_block="off"
_arg_debug="off"
_arg_dry_run="off"
print_help()
{
printf '%s\n' "A qbatch enabled, optimal registration pyramid based re-implementaiton of antsMultivariateTemplateConstruction2.sh"
printf 'Usage: %s [-h|--help] [--output-dir <arg>] [--gradient-step <arg>] [--starting-target <arg>] [--starting-target-mask <arg>] [--starting-average-resolution <arg>] [--iterations <arg>] [--convergence <arg>] [--syn-shrink-factors <arg>] [--syn-smoothing-sigmas <arg>] [--syn-convergence <arg>] [--syn-control <arg>] [--linear-shrink-factors <arg>] [--linear-smoothing-sigmas <arg>] [--linear-convergence <arg>] [--(no-)float] [--(no-)fast] [--average-type <AVERAGE>] [--average-prog <PROG>] [--(no-)average-norm] [--(no-)nlin-shape-update] [--(no-)affine-shape-update] [--(no-)scale-affines] [--(no-)rigid-update] [--sharpen-type <SHARPEN>] [--masks <arg>] [--(no-)mask-extract] [--mask-merge-threshold <arg>] [--stages <arg>] [--(no-)reuse-affines] [--final-target <arg>] [--final-target-mask <arg>] [--walltime-short <arg>] [--walltime-linear <arg>] [--walltime-nonlinear <arg>] [--jobname-prefix <arg>] [--job-predepend <arg>] [--(no-)skip-file-checks] [--(no-)block] [--(no-)debug] [--(no-)dry-run] <inputs-1> [<inputs-2>] ... [<inputs-n>] ...\n' "$0"
printf '\t%s\n' "<inputs>: Input text file, one line per input"
printf '\t%s\n' "-h, --help: Prints help"
printf '\t%s\n' "--output-dir: Output directory for modelbuild (default: 'output')"
printf '\t%s\n' "--gradient-step: Gradient scaling step during template warping, can be a comma separated list same length as number of iterations (default: '0.25')"
printf '\t%s\n' "--starting-target: Starting target, dumb average (dumb), align all inputs using their center-of-mass before averaging (com) use the first input (first), or an external file (provide path) (default: 'first')"
printf '\t%s\n' "--starting-target-mask: Mask for starting target if a file (no default)"
printf '\t%s\n' "--starting-average-resolution: If no starting target is provided, an average is constructed from all inputs, resample average to a target resolution MxNxO before modelbuild (no default)"
printf '\t%s\n' "--iterations: Number of iterations of model building per stage (default: '4')"
printf '\t%s\n' "--convergence: Convergence limit during registration calls (default: '1e-7')"
printf '\t%s\n' "--syn-shrink-factors: Shrink factors for Non-linear (SyN) stages, provide to override automatic generation, must be provided with sigmas and convergence (no default)"
printf '\t%s\n' "--syn-smoothing-sigmas: Smoothing sigmas for Non-linear (SyN) stages, provide to override automatic generation, must be provided with shrinks and convergence (no default)"
printf '\t%s\n' "--syn-convergence: Convergence levels for Non-linear (SyN) stages, provide to override automatic generation, must be provided with shrinks and sigmas (no default)"
printf '\t%s\n' "--syn-control: Non-linear (SyN) gradient and regularization parameters, not checked for correctness (default: '0.1,3,0')"
printf '\t%s\n' "--linear-shrink-factors: Shrink factors for linear stages, provide to override automatic generation, must be provided with sigmas and convergence (no default)"
printf '\t%s\n' "--linear-smoothing-sigmas: Smoothing sigmas for linear stages, provide to override automatic generation, must be provided with shrinks and convergence (no default)"
printf '\t%s\n' "--linear-convergence: Convergence levels for linear stages, provide to override automatic generation, must be provided with shrinks and sigmas (no default)"
printf '\t%s\n' "--float, --no-float: Use float instead of double for calculations (reduce memory requirements) (off by default)"
printf '\t%s\n' "--fast, --no-fast: Run SyN registration with Mattes instead of CC (off by default)"
printf '\t%s\n' "--average-type: Type of averaging to apply during modelbuild. Can be one of: 'mean', 'median', 'trimmed_mean', 'efficient_trimean' and 'huber' (default: 'mean')"
printf '\t%s\n' "--average-prog: Software to use for averaging images and transforms
python with SimpleITK needed for trimmed_mean, efficient_trimean, and huber. Can be one of: 'ANTs' and 'python' (default: 'ANTs')"
printf '\t%s\n' "--average-norm, --no-average-norm: Normalize images by their mean before averaging (on by default)"
printf '\t%s\n' "--nlin-shape-update, --no-nlin-shape-update: Perform nlin shape update, disable to switch to a forward-only modelbuild (on by default)"
printf '\t%s\n' "--affine-shape-update, --no-affine-shape-update: Scale template by inverse of average affine transforms during shape update step (on by default)"
printf '\t%s\n' "--scale-affines, --no-scale-affines: Apply gradient step scaling factor to average affine during shape update step, requires python with VTK and SimpleITK (off by default)"
printf '\t%s\n' "--rigid-update, --no-rigid-update: Include rigid component of transform when performing shape update on template (disable if template drifts in translation or orientation) (off by default)"
printf '\t%s\n' "--sharpen-type: Type of sharpening applied to average during modelbuild. Can be one of: 'none', 'laplacian' and 'unsharp' (default: 'unsharp')"
printf '\t%s\n' "--masks: File containing mask filenames, one file per line (no default)"
printf '\t%s\n' "--mask-extract, --no-mask-extract: Use masks to extract images before registration (off by default)"
printf '\t%s\n' "--mask-merge-threshold: Threshold to combine masks during averaging (default: '0.5')"
printf '\t%s\n' "--stages: Stages of modelbuild used (comma separated options: 'rigid' 'similarity' 'affine' 'nlin' 'nlin-only','volgenmodel-nlin'), append a number in brackets 'rigid[n]' to override global iteration setting (default: 'rigid,similarity,affine,nlin')"
printf '\t%s\n' "--reuse-affines, --no-reuse-affines: Reuse affines from previous stage/iteration to initialize next stage (off by default)"
printf '\t%s\n' "--final-target: Perform a final registration between the average and final target, used in postprocessing (default: 'none')"
printf '\t%s\n' "--final-target-mask: Mask for the final target used in postprocessing (default: 'none')"
printf '\t%s\n' "--walltime-short: Walltime for short running stages (averaging, resampling) (default: '00:30:00')"
printf '\t%s\n' "--walltime-linear: Walltime for linear registration stages (default: '0:45:00')"
printf '\t%s\n' "--walltime-nonlinear: Walltime for nonlinear registration stages (default: '4:30:00')"
printf '\t%s\n' "--jobname-prefix: Prefix to add to front of job names, used by twolevel wrapper (no default)"
printf '\t%s\n' "--job-predepend: Job name dependency pattern to prepend to all jobs, used by twolevel wrapper (no default)"
printf '\t%s\n' "--skip-file-checks, --no-skip-file-checks: Skip preflight checking of existence of files, used by twolevel wrapper (off by default)"
printf '\t%s\n' "--block, --no-block: For SGE, PBS and SLURM, blocks execution until jobs are finished. (off by default)"
printf '\t%s\n' "--debug, --no-debug: Debug mode, print all commands to stdout (off by default)"
printf '\t%s\n' "--dry-run, --no-dry-run: Dry run, don't run any commands, implies debug (off by default)"
}
parse_commandline()
{
_positionals_count=0
while test $# -gt 0
do
_key="$1"
case "$_key" in
-h|--help)
print_help
exit 0
;;
-h*)
print_help
exit 0
;;
--output-dir)
test $# -lt 2 && die "Missing value for the optional argument '$_key'." 1
_arg_output_dir="$2"
shift
;;
--output-dir=*)
_arg_output_dir="${_key##--output-dir=}"
;;
--gradient-step)
test $# -lt 2 && die "Missing value for the optional argument '$_key'." 1
_arg_gradient_step="$2"
shift
;;
--gradient-step=*)
_arg_gradient_step="${_key##--gradient-step=}"
;;
--starting-target)
test $# -lt 2 && die "Missing value for the optional argument '$_key'." 1
_arg_starting_target="$2"
shift
;;
--starting-target=*)
_arg_starting_target="${_key##--starting-target=}"
;;
--starting-target-mask)
test $# -lt 2 && die "Missing value for the optional argument '$_key'." 1
_arg_starting_target_mask="$2"
shift
;;
--starting-target-mask=*)
_arg_starting_target_mask="${_key##--starting-target-mask=}"
;;
--starting-average-resolution)
test $# -lt 2 && die "Missing value for the optional argument '$_key'." 1
_arg_starting_average_resolution="$2"
shift
;;
--starting-average-resolution=*)
_arg_starting_average_resolution="${_key##--starting-average-resolution=}"
;;
--iterations)
test $# -lt 2 && die "Missing value for the optional argument '$_key'." 1
_arg_iterations="$2"
shift
;;
--iterations=*)
_arg_iterations="${_key##--iterations=}"
;;
--convergence)
test $# -lt 2 && die "Missing value for the optional argument '$_key'." 1
_arg_convergence="$2"
shift
;;
--convergence=*)
_arg_convergence="${_key##--convergence=}"
;;
--syn-shrink-factors)
test $# -lt 2 && die "Missing value for the optional argument '$_key'." 1
_arg_syn_shrink_factors="$2"
shift
;;
--syn-shrink-factors=*)
_arg_syn_shrink_factors="${_key##--syn-shrink-factors=}"
;;
--syn-smoothing-sigmas)
test $# -lt 2 && die "Missing value for the optional argument '$_key'." 1
_arg_syn_smoothing_sigmas="$2"
shift
;;
--syn-smoothing-sigmas=*)
_arg_syn_smoothing_sigmas="${_key##--syn-smoothing-sigmas=}"
;;
--syn-convergence)
test $# -lt 2 && die "Missing value for the optional argument '$_key'." 1
_arg_syn_convergence="$2"
shift
;;
--syn-convergence=*)
_arg_syn_convergence="${_key##--syn-convergence=}"
;;
--syn-control)
test $# -lt 2 && die "Missing value for the optional argument '$_key'." 1
_arg_syn_control="$2"
shift
;;
--syn-control=*)
_arg_syn_control="${_key##--syn-control=}"
;;
--linear-shrink-factors)
test $# -lt 2 && die "Missing value for the optional argument '$_key'." 1
_arg_linear_shrink_factors="$2"
shift
;;
--linear-shrink-factors=*)
_arg_linear_shrink_factors="${_key##--linear-shrink-factors=}"
;;
--linear-smoothing-sigmas)
test $# -lt 2 && die "Missing value for the optional argument '$_key'." 1
_arg_linear_smoothing_sigmas="$2"
shift
;;
--linear-smoothing-sigmas=*)
_arg_linear_smoothing_sigmas="${_key##--linear-smoothing-sigmas=}"
;;
--linear-convergence)
test $# -lt 2 && die "Missing value for the optional argument '$_key'." 1
_arg_linear_convergence="$2"
shift
;;
--linear-convergence=*)
_arg_linear_convergence="${_key##--linear-convergence=}"
;;
--no-float|--float)
_arg_float="on"
test "${1:0:5}" = "--no-" && _arg_float="off"
;;
--no-fast|--fast)
_arg_fast="on"
test "${1:0:5}" = "--no-" && _arg_fast="off"
;;
--average-type)
test $# -lt 2 && die "Missing value for the optional argument '$_key'." 1
_arg_average_type="$(averagetype "$2" "average-type")" || exit 1
shift
;;
--average-type=*)
_arg_average_type="$(averagetype "${_key##--average-type=}" "average-type")" || exit 1
;;
--average-prog)
test $# -lt 2 && die "Missing value for the optional argument '$_key'." 1
_arg_average_prog="$(averageprogtype "$2" "average-prog")" || exit 1
shift
;;
--average-prog=*)
_arg_average_prog="$(averageprogtype "${_key##--average-prog=}" "average-prog")" || exit 1
;;
--no-average-norm|--average-norm)
_arg_average_norm="on"
test "${1:0:5}" = "--no-" && _arg_average_norm="off"
;;
--no-nlin-shape-update|--nlin-shape-update)
_arg_nlin_shape_update="on"
test "${1:0:5}" = "--no-" && _arg_nlin_shape_update="off"
;;
--no-affine-shape-update|--affine-shape-update)
_arg_affine_shape_update="on"
test "${1:0:5}" = "--no-" && _arg_affine_shape_update="off"
;;
--no-scale-affines|--scale-affines)
_arg_scale_affines="on"
test "${1:0:5}" = "--no-" && _arg_scale_affines="off"
;;
--no-rigid-update|--rigid-update)
_arg_rigid_update="on"
test "${1:0:5}" = "--no-" && _arg_rigid_update="off"
;;
--sharpen-type)
test $# -lt 2 && die "Missing value for the optional argument '$_key'." 1
_arg_sharpen_type="$(sharptypetype "$2" "sharpen-type")" || exit 1
shift
;;
--sharpen-type=*)
_arg_sharpen_type="$(sharptypetype "${_key##--sharpen-type=}" "sharpen-type")" || exit 1
;;
--masks)
test $# -lt 2 && die "Missing value for the optional argument '$_key'." 1
_arg_masks="$2"
shift
;;
--masks=*)
_arg_masks="${_key##--masks=}"
;;
--no-mask-extract|--mask-extract)
_arg_mask_extract="on"
test "${1:0:5}" = "--no-" && _arg_mask_extract="off"
;;
--mask-merge-threshold)
test $# -lt 2 && die "Missing value for the optional argument '$_key'." 1
_arg_mask_merge_threshold="$2"
shift
;;
--mask-merge-threshold=*)
_arg_mask_merge_threshold="${_key##--mask-merge-threshold=}"
;;
--stages)
test $# -lt 2 && die "Missing value for the optional argument '$_key'." 1
_arg_stages="$2"
shift
;;
--stages=*)
_arg_stages="${_key##--stages=}"
;;
--no-reuse-affines|--reuse-affines)
_arg_reuse_affines="on"
test "${1:0:5}" = "--no-" && _arg_reuse_affines="off"
;;
--final-target)
test $# -lt 2 && die "Missing value for the optional argument '$_key'." 1
_arg_final_target="$2"
shift
;;
--final-target=*)
_arg_final_target="${_key##--final-target=}"
;;
--final-target-mask)
test $# -lt 2 && die "Missing value for the optional argument '$_key'." 1
_arg_final_target_mask="$2"
shift
;;
--final-target-mask=*)
_arg_final_target_mask="${_key##--final-target-mask=}"
;;
--walltime-short)
test $# -lt 2 && die "Missing value for the optional argument '$_key'." 1
_arg_walltime_short="$2"
shift
;;
--walltime-short=*)
_arg_walltime_short="${_key##--walltime-short=}"
;;
--walltime-linear)
test $# -lt 2 && die "Missing value for the optional argument '$_key'." 1
_arg_walltime_linear="$2"
shift
;;
--walltime-linear=*)
_arg_walltime_linear="${_key##--walltime-linear=}"
;;
--walltime-nonlinear)
test $# -lt 2 && die "Missing value for the optional argument '$_key'." 1
_arg_walltime_nonlinear="$2"
shift
;;
--walltime-nonlinear=*)
_arg_walltime_nonlinear="${_key##--walltime-nonlinear=}"
;;
--jobname-prefix)
test $# -lt 2 && die "Missing value for the optional argument '$_key'." 1
_arg_jobname_prefix="$2"
shift
;;
--jobname-prefix=*)
_arg_jobname_prefix="${_key##--jobname-prefix=}"
;;
--job-predepend)
test $# -lt 2 && die "Missing value for the optional argument '$_key'." 1
_arg_job_predepend="$2"
shift
;;
--job-predepend=*)
_arg_job_predepend="${_key##--job-predepend=}"
;;
--no-skip-file-checks|--skip-file-checks)
_arg_skip_file_checks="on"
test "${1:0:5}" = "--no-" && _arg_skip_file_checks="off"
;;
--no-block|--block)
_arg_block="on"
test "${1:0:5}" = "--no-" && _arg_block="off"
;;
--no-debug|--debug)
_arg_debug="on"
test "${1:0:5}" = "--no-" && _arg_debug="off"
;;
--no-dry-run|--dry-run)
_arg_dry_run="on"
test "${1:0:5}" = "--no-" && _arg_dry_run="off"
;;
*)
_last_positional="$1"
_positionals+=("$_last_positional")
_positionals_count=$((_positionals_count + 1))
;;
esac
shift
done
}
handle_passed_args_count()
{
local _required_args_string="'inputs'"
test "${_positionals_count}" -ge 1 || _PRINT_HELP=yes die "FATAL ERROR: Not enough positional arguments - we require at least 1 (namely: $_required_args_string), but got only ${_positionals_count}." 1
}
assign_positional_args()
{
local _positional_name _shift_for=$1
_positional_names="_arg_inputs "
_our_args=$((${#_positionals[@]} - 1))
for ((ii = 0; ii < _our_args; ii++))
do
_positional_names="$_positional_names _arg_inputs[$((ii + 1))]"
done
shift "$_shift_for"
for _positional_name in ${_positional_names}
do
test $# -gt 0 || break
eval "$_positional_name=\${1}" || die "Error during argument parsing, possibly an Argbash bug." 1
shift
done
}
parse_commandline "$@"
handle_passed_args_count
assign_positional_args 1 "${_positionals[@]}"
# OTHER STUFF GENERATED BY Argbash
# Validation of values
### END OF CODE GENERATED BY Argbash (sortof) ### ])
# [ <-- needed because of Argbash
set -uo pipefail
set -eE -o functrace
# Load up helper scripts and define helper variables
# shellcheck source=helpers.sh
source "$(cd "$(dirname "${BASH_SOURCE[0]}")" && pwd)/helpers.sh"
# Set magic variables for current file, directory, os, etc.
__file="${__dir}/$(basename "${BASH_SOURCE[${__b3bp_tmp_source_idx:-0}]}")"
__base="$(basename "${__file}" .sh)"
# shellcheck disable=SC2034,SC2015
__invocation="$(printf %q "${__file}")$( (($#)) && printf ' %q' "$@" || true)"
# Setup a directory which contains all commands run
# for this invocation
mkdir -p ${_arg_output_dir}/jobs/${__datetime}
export QBATCH_SCRIPT_FOLDER="${_arg_output_dir}/qbatch/${__datetime}"
# Store the full command line for each run
echo ${__invocation} >${_arg_output_dir}/jobs/${__datetime}/invocation
info "Checking input files"
# Load input file into array
if [[ ! -s ${_arg_inputs[0]} ]]; then
failure "Input file ${_arg_inputs[0]} is non-existent or zero size"
else
mapfile -t _arg_inputs <${_arg_inputs[0]}
fi
input_filenames_for_dup_check=()
for file in "${_arg_inputs[@]}"; do
input_filenames_for_dup_check+=($(basename ${file}))
if [[ ${_arg_skip_file_checks} == "off" ]]; then
if [[ ! -s ${file} ]]; then
failure "Input file ${file} is non-existent or zero size"
fi
fi
done
#Check for duplicate filenames
duplicates=$(IFS=$'\n' ; sort <<<"${input_filenames_for_dup_check[*]}" | uniq -d)
if [[ ! -z ${duplicates} ]]; then
failure "The following filenames are duplicated in the input file, file names must be unique \n ${duplicates}"
fi
# Fill up array of masks
if [[ -z ${_arg_masks} ]]; then
_arg_masks=()
for file in "${_arg_inputs[@]}"; do
_arg_masks+=('')
done
else
mapfile -t _arg_masks <${_arg_masks}
info "Checking mask files"
if [[ ${_arg_skip_file_checks} == "off" ]]; then
for file in "${_arg_masks[@]}"; do
if [[ ! -s ${file} ]]; then
failure "Mask file ${file} is non-existent or zero size"
fi
done
fi
fi
# If target mask is specified use it
target_mask=${_arg_starting_target_mask}
if [[ -n ${target_mask} && ! -s ${target_mask} ]]; then
failure "Starting target mask ${target_mask} is non-existant or zero size"
fi
# Enable fast mode in antsRegistration_affine_SyN.sh
if [[ ${_arg_fast} == "on" ]]; then
_arg_fast="--fast"
else
_arg_fast="--no-fast"
fi
# Enable mask extraction in antsRegistration_affine_SyN.sh
if [[ ${_arg_mask_extract} == "on" ]]; then
_arg_mask_extract="--mask-extract"
else
_arg_mask_extract="--no-mask-extract"
fi
# Enable float mode for ants commands
if [[ ${_arg_float} == "on" ]]; then
_arg_float="--float"
else
_arg_float=""
fi
# Handle registration overrides
if [[ -n ${_arg_linear_convergence} && -n ${_arg_linear_shrink_factors} && -n ${_arg_linear_smoothing_sigmas} ]]; then
_arg_linear_convergence="--linear-convergence ${_arg_linear_convergence}"
_arg_linear_shrink_factors="--linear-shrink-factors ${_arg_linear_shrink_factors}"
_arg_linear_smoothing_sigmas="--linear-smoothing-sigmas ${_arg_linear_smoothing_sigmas}"
fi
if [[ -n ${_arg_syn_convergence} && -n ${_arg_syn_shrink_factors} && -n ${_arg_syn_smoothing_sigmas} ]]; then
_arg_syn_convergence="--syn-convergence ${_arg_syn_convergence}"
_arg_syn_shrink_factors="--syn-shrink-factors ${_arg_syn_shrink_factors}"
_arg_syn_smoothing_sigmas="--syn-smoothing-sigmas ${_arg_syn_smoothing_sigmas}"
fi
# Include rigid component in affine when updating template
if [[ ${_arg_rigid_update} == "on" ]]; then
AVERAGE_AFFINE_PROGRAM="AverageAffineTransform"
else
AVERAGE_AFFINE_PROGRAM="AverageAffineTransformNoRigid"
fi
# Enable block for qbatch job submission
if [[ ${_arg_block} == "on" ]]; then
_arg_block="--block"
else
_arg_block=""
fi
# Job predependency from wrapper
if [[ ! -z ${_arg_job_predepend} ]]; then
_arg_job_predepend="--depend ${_arg_job_predepend}*"
fi
# Prefight check for required programs
for program in AverageImages ImageSetStatistics ResampleImage qbatch ImageMath \
ThresholdImage ExtractRegionFromImageByMask antsAI ConvertImage \
antsApplyTransforms AverageAffineTransform AverageAffineTransformNoRigid \
antsRegistration_affine_SyN.sh parallel; do
if ! command -v ${program} &>/dev/null; then
failure "Required program ${program} not found!"
fi
done
# Check for valid average choices
if [[ ${_arg_average_prog} == "ANTs" ]]; then
case ${_arg_average_type} in
trimmed_mean|efficient_trimean|huber)
failure "Average method ${_arg_average_type} is not supported in ANTs, use --average-prog python"
;;
esac
fi
# Check that python code will run
if [[ ${_arg_average_prog} == "python" ]]; then
${__dir}/sitk_image_math.py -h &>/dev/null || failure "sitk_image_math.py failed to run, check python version and dependencies"
${__dir}/sitk_average_affine_transforms.py -h &>/dev/null || failure "sitk_average_affine_transforms.py failed to run, check python version and dependencies"
fi
# Check that interpolator works if requested
if [[ ${_arg_scale_affines} == "on" ]]; then
${__dir}/interp_transform.py -h &>/dev/null || failure "interp_transform.py failed to run, check python version and dependencies"
fi
if [[ ${_arg_average_norm} == "off" ]]; then
unset _arg_average_norm
else
_arg_average_norm=2
fi
# Averaging function
average_images () {
local output=$1
shift
local avg_inputs=("$@")
if [[ ${_arg_average_prog} == "ANTs" ]]; then
case ${_arg_average_type} in
mean)
echo AverageImages 3 ${output} \
${_arg_average_norm:-0} \
"${avg_inputs[@]}"
;;
median)
printf '%s\n' "${avg_inputs[@]}" > $(dirname ${output})/$(basename ${output} .nii.gz)_medianinput.txt
echo ImageSetStatistics 3 $(dirname ${output})/$(basename ${output} .nii.gz)_medianinput.txt \
${output} 0
;;
esac
else
echo ${__dir}/sitk_image_math.py \
-o ${output} \
--method ${_arg_average_type} \
${_arg_average_norm:+--normalize} \
--file-list "${avg_inputs[@]}"
fi
}
# If no starting target is supplied, create one
if [[ ! -s ${_arg_starting_target} ]]; then
if [[ ! -s ${_arg_output_dir}/initialaverage/initialtarget.nii.gz ]]; then
mkdir -p ${_arg_output_dir}/initialaverage
if [[ ${_arg_starting_target} == "dumb" ]]; then
info "Generating initial average of all subjects using ${_arg_average_type} method"
average_images ${_arg_output_dir}/initialaverage/initialtarget.nii.gz "${_arg_inputs[@]}" \
>${_arg_output_dir}/jobs/${__datetime}/initialaverage
if [[ -n ${_arg_starting_average_resolution} ]]; then
echo ResampleImage 3 ${_arg_output_dir}/initialaverage/initialtarget.nii.gz \
${_arg_output_dir}/initialaverage/initialtarget.nii.gz \
${_arg_starting_average_resolution} 0 \
>>${_arg_output_dir}/jobs/${__datetime}/initialaverage
fi
debug "$(cat ${_arg_output_dir}/jobs/${__datetime}/initialaverage)"
if [[ ${_arg_dry_run} == "off" ]]; then
qbatch ${_arg_block} --logdir ${_arg_output_dir}/logs/${__datetime} \
--walltime ${_arg_walltime_short} \
-N ${_arg_jobname_prefix}modelbuild_${__datetime}_initialaverage \
${_arg_job_predepend} \
-- bash ${_arg_output_dir}/jobs/${__datetime}/initialaverage
fi
last_round_job="--depend ${_arg_jobname_prefix}modelbuild_${__datetime}_initialaverage"
elif [[ ${_arg_starting_target} == "com" ]]; then
info "Generating initial average of all subjects using ${_arg_average_type} and center-of-mass alignment"
# Bootstrap COM alignment with a normalized mean
echo AverageImages 3 ${_arg_output_dir}/initialaverage/initialtarget_dumb.nii.gz 2 \
"${_arg_inputs[@]}" \
>${_arg_output_dir}/jobs/${__datetime}/initialaverage_dumb
echo ImageMath 3 ${_arg_output_dir}/initialaverage/initialtarget_dumb.nii.gz \
PadImage ${_arg_output_dir}/initialaverage/initialtarget_dumb.nii.gz 20 \
>>${_arg_output_dir}/jobs/${__datetime}/initialaverage_dumb
echo ThresholdImage 3 ${_arg_output_dir}/initialaverage/initialtarget_dumb.nii.gz \
${_arg_output_dir}/initialaverage/bgmask.nii.gz Otsu 4 \
>>${_arg_output_dir}/jobs/${__datetime}/initialaverage_dumb
echo ThresholdImage 3 ${_arg_output_dir}/initialaverage/bgmask.nii.gz \
${_arg_output_dir}/initialaverage/bgmask.nii.gz 0.5 Inf 1 0 \
>>${_arg_output_dir}/jobs/${__datetime}/initialaverage_dumb
echo ExtractRegionFromImageByMask 3 ${_arg_output_dir}/initialaverage/initialtarget_dumb.nii.gz \
${_arg_output_dir}/initialaverage/initialtarget_dumb_recrop.nii.gz \
${_arg_output_dir}/initialaverage/bgmask.nii.gz 1 20 \
>>${_arg_output_dir}/jobs/${__datetime}/initialaverage_dumb
echo cp -f ${_arg_output_dir}/initialaverage/initialtarget_dumb_recrop.nii.gz \
${_arg_output_dir}/initialaverage/initialtarget_dumb.nii.gz \
>>${_arg_output_dir}/jobs/${__datetime}/initialaverage_dumb
debug "$(cat ${_arg_output_dir}/jobs/${__datetime}/initialaverage_dumb)"
if [[ ${_arg_dry_run} == "off" ]]; then
qbatch ${_arg_block} --logdir ${_arg_output_dir}/logs/${__datetime} \
--walltime ${_arg_walltime_short} \
-N ${_arg_jobname_prefix}modelbuild_${__datetime}_initialaverage_dumb \
${_arg_job_predepend} \
-- bash ${_arg_output_dir}/jobs/${__datetime}/initialaverage_dumb
fi
# Center-of-mass align the files onto the average, create an average and repeat
for file in "${_arg_inputs[@]}"; do
echo antsAI -d 3 --convergence 0 \
-m Mattes[${_arg_output_dir}/initialaverage/initialtarget_dumb.nii.gz,${file},32,None] \
-o ${_arg_output_dir}/initialaverage/$(basename ${file} | extension_strip).mat \
-t AlignCentersOfMass >>${_arg_output_dir}/jobs/${__datetime}/initialaverage_reg_com
done
for file in "${_arg_inputs[@]}"; do
echo antsApplyTransforms -d 3 -i ${file} -r ${_arg_output_dir}/initialaverage/initialtarget_dumb.nii.gz \
-t ${_arg_output_dir}/initialaverage/$(basename ${file} | extension_strip).mat \
-o ${_arg_output_dir}/initialaverage/$(basename ${file} | extension_strip).nii.gz >>${_arg_output_dir}/jobs/${__datetime}/initialaverage_resample_com
done
average_images ${_arg_output_dir}/initialaverage/initialtarget_com.nii.gz \
$(for j in "${!_arg_inputs[@]}"; do echo -n "${_arg_output_dir}/initialaverage/$(basename ${_arg_inputs[${j}]} | extension_strip).nii.gz "; done) \
>>${_arg_output_dir}/jobs/${__datetime}/initialaverage_com
echo ImageMath 3 ${_arg_output_dir}/initialaverage/initialtarget_com.nii.gz \
PadImage ${_arg_output_dir}/initialaverage/initialtarget_com.nii.gz 20 \
>>${_arg_output_dir}/jobs/${__datetime}/initialaverage_com
echo ThresholdImage 3 ${_arg_output_dir}/initialaverage/initialtarget_com.nii.gz \
${_arg_output_dir}/initialaverage/bgmask.nii.gz Otsu 4 \
>>${_arg_output_dir}/jobs/${__datetime}/initialaverage_com
echo ThresholdImage 3 ${_arg_output_dir}/initialaverage/bgmask.nii.gz \
${_arg_output_dir}/initialaverage/bgmask.nii.gz 0.5 Inf 1 0 \
>>${_arg_output_dir}/jobs/${__datetime}/initialaverage_com
echo ExtractRegionFromImageByMask 3 ${_arg_output_dir}/initialaverage/initialtarget_com.nii.gz \
${_arg_output_dir}/initialaverage/initialtarget_com_recrop.nii.gz \
${_arg_output_dir}/initialaverage/bgmask.nii.gz 1 20 \
>>${_arg_output_dir}/jobs/${__datetime}/initialaverage_com
echo mv -f ${_arg_output_dir}/initialaverage/initialtarget_com_recrop.nii.gz \
${_arg_output_dir}/initialaverage/initialtarget_com.nii.gz \
>>${_arg_output_dir}/jobs/${__datetime}/initialaverage_com
if [[ -n ${_arg_starting_average_resolution} ]]; then
echo ResampleImage 3 ${_arg_output_dir}/initialaverage/initialtarget_com.nii.gz \
${_arg_output_dir}/initialaverage/initialtarget.nii.gz ${_arg_starting_average_resolution} 0 \
>>${_arg_output_dir}/jobs/${__datetime}/initialaverage_com
else
echo cp -f ${_arg_output_dir}/initialaverage/initialtarget_com.nii.gz \
${_arg_output_dir}/initialaverage/initialtarget.nii.gz \
>>${_arg_output_dir}/jobs/${__datetime}/initialaverage_com
fi
debug "$(cat ${_arg_output_dir}/jobs/${__datetime}/initialaverage_reg_com)"
debug "$(cat ${_arg_output_dir}/jobs/${__datetime}/initialaverage_resample_com)"
debug "$(cat ${_arg_output_dir}/jobs/${__datetime}/initialaverage_com)"
if [[ ${_arg_dry_run} == "off" ]]; then
qbatch ${_arg_block} --logdir ${_arg_output_dir}/logs/${__datetime} \
--walltime ${_arg_walltime_short} \
-N ${_arg_jobname_prefix}modelbuild_${__datetime}_initialaverage_reg_com \
${_arg_job_predepend} --depend ${_arg_jobname_prefix}modelbuild_${__datetime}_initialaverage_dumb \
${_arg_output_dir}/jobs/${__datetime}/initialaverage_reg_com
qbatch ${_arg_block} --logdir ${_arg_output_dir}/logs/${__datetime} \
--walltime ${_arg_walltime_short} \
-N ${_arg_jobname_prefix}modelbuild_${__datetime}_initialaverage_resample_com \
${_arg_job_predepend} --depend ${_arg_jobname_prefix}modelbuild_${__datetime}_initialaverage_reg_com \
${_arg_output_dir}/jobs/${__datetime}/initialaverage_resample_com
qbatch ${_arg_block} --logdir ${_arg_output_dir}/logs/${__datetime} \
--walltime ${_arg_walltime_short} \
-N ${_arg_jobname_prefix}modelbuild_${__datetime}_initialaverage_com \
${_arg_job_predepend} --depend ${_arg_jobname_prefix}modelbuild_${__datetime}_initialaverage_resample_com \
-- bash ${_arg_output_dir}/jobs/${__datetime}/initialaverage_com
fi
last_round_job="--depend ${_arg_jobname_prefix}modelbuild_${__datetime}_initialaverage_com"
elif [[ ${_arg_starting_target} == "first" ]]; then
info "Using the first input image "${_arg_inputs[0]}" as initalization target"
cp -f ${_arg_inputs[0]} ${_arg_output_dir}/initialaverage/initialtarget.nii.gz
last_round_job=""
else
error "Starting target setting ${_arg_starting_target} unknown"
fi
else
last_round_job=""
fi
ln -srf ${_arg_output_dir}/initialaverage/initialtarget.nii.gz ${_arg_output_dir}/initialtarget.nii.gz
target=${_arg_output_dir}/initialtarget.nii.gz
else
if [[ ${_arg_skip_file_checks} == "on" ]]; then
ln -srf ${_arg_starting_target} ${_arg_output_dir}/initialtarget.nii.gz
else
info "Checking starting target"
if [[ ! -s ${_arg_starting_target} ]]; then
failure "Starting target ${_arg_starting_target} is non-existant or zero size"
fi
cp -f ${_arg_starting_target} ${_arg_output_dir}/initialtarget.nii.gz
fi
target=${_arg_output_dir}/initialtarget.nii.gz
last_round_job=""
fi
walltime_reg=${_arg_walltime_linear}
#Convert comma-seperated options into array
IFS=',' read -r -a _arg_stages <<<${_arg_stages}
#Read gradient schedule into array
IFS=',' read -r -a _arg_gradient_step <<<${_arg_gradient_step}
# Looping over different stages of modelbuilding
for reg_type in "${_arg_stages[@]}"; do
stage_iterations=$(grep -E -o '[0-9]+' <<<${reg_type} || echo ${_arg_iterations})
reg_type=$(sed -r 's/\[[0-9]+\]//g' <<<${reg_type})
k=0
if [[ "${reg_type}" == *volgenmodel* ]]; then
tmpdir=$(mktemp -d)
info "Calculating maximum image feature dimension of template for volgenmodel iterations"
ThresholdImage 3 ${_arg_output_dir}/initialtarget.nii.gz ${tmpdir}/bgmask.h5 1e-12 Inf 1 0
ThresholdImage 3 ${_arg_output_dir}/initialtarget.nii.gz ${tmpdir}/otsu.h5 Otsu 4 ${tmpdir}/bgmask.h5 &> /dev/null
ThresholdImage 3 ${tmpdir}/otsu.h5 ${tmpdir}/otsu.h5 2 Inf 1 0
LabelGeometryMeasures 3 ${tmpdir}/otsu.h5 none ${tmpdir}/geometry.csv &> /dev/null
volgenmodel_fixed_maximum_resolution=$(python -c "print(max([ a*b for a,b in zip( [ a-b for a,b in zip( [float(x) for x in \"$(tail -1 ${tmpdir}/geometry.csv | cut -d, -f 14,16,18)\".split(\",\") ],[float(x) for x in \"$(tail -1 ${tmpdir}/geometry.csv | cut -d, -f 13,15,17)\".split(\",\") ])],[abs(x) for x in [float(x) for x in \"$(PrintHeader ${_arg_output_dir}/initialtarget.nii.gz 1)\".split(\"x\")]])]))")
info "Calculating minimum image feature dimension of template for volgenmodel iterations"
volgenmodel_fixed_minimum_resolution=$(python -c "print(min([abs(x) for x in [float(x) for x in \"$(PrintHeader ${_arg_output_dir}/initialtarget.nii.gz 1)\".split(\"x\")]]))")
volgenmodel_iterations=$(ants_generate_iterations.py --min ${volgenmodel_fixed_minimum_resolution} --max ${volgenmodel_fixed_maximum_resolution} | grep shrink | grep -o x | wc -l)
info "volgenmodel registration will perform ${volgenmodel_iterations} levels with ${stage_iterations} repeats at each level"
rm -rf ${tmpdir}
else
volgenmodel_iterations=0
fi
while ((k <= volgenmodel_iterations)); do
i=0
if [[ "${reg_type}" == *volgenmodel* ]]; then
reg_type=volgenmodel-nlin_${k}
IFS=: read h m s <<<"${_arg_walltime_nonlinear%.*}"
walltime_reg=$((10#$s+10#$m*60+10#$h*3600))
walltime_reg=$(calc "int(${walltime_reg}*8^(${k}/${volgenmodel_iterations} - 1))")
if ((walltime_reg < 900)); then
walltime_reg=900
fi
walltime_reg=$(date -d@${walltime_reg} -u +%H:%M:%S)
fi
while ((i < stage_iterations)); do
info "Computing ${reg_type} stage iteration $((i + 1)) jobs"
if [[ ! -z ${_arg_gradient_step[i]:-} ]]; then
gradient_step=${_arg_gradient_step[i]}
else
gradient_step=${_arg_gradient_step[-1]}
fi
if [[ ${target} == ${_arg_output_dir}/initialtarget.nii.gz ]]; then
use_histogram=""
else
use_histogram="--histogram-matching"
fi
if [[ ! -s ${_arg_output_dir}/${reg_type}/${i}/average/template_sharpen_shapeupdate.nii.gz ]]; then
mkdir -p ${_arg_output_dir}/${reg_type}/${i}/{transforms,resample,average}
mkdir -p ${_arg_output_dir}/${reg_type}/${i}/resample/masks
# Empty files
>${_arg_output_dir}/jobs/${__datetime}/${reg_type}_${i}_reg
>${_arg_output_dir}/jobs/${__datetime}/${reg_type}_${i}_maskresample
>${_arg_output_dir}/jobs/${__datetime}/${reg_type}_${i}_maskaverage
# Register images to target
for j in "${!_arg_inputs[@]}"; do
# Check for existence of moving mask, if it exists, add option
if [[ -s ${_arg_masks[${j}]} ]]; then
_mask="--moving-mask ${_arg_masks[${j}]}"
else
_mask=""
fi
# If target mask is defined, add to the registration command
if [[ -n ${target_mask} ]]; then
_mask+=" --fixed-mask ${target_mask}"
fi
# If three was a previous round of modelbuilding, bootstrap registration with its affine (if enabled), also do so for nlin-only stages
if [[ $(basename ${target}) == "template_sharpen_shapeupdate.nii.gz" && $(dirname $(dirname $(dirname $(dirname ${target})))) == "${_arg_output_dir}" && ${_arg_reuse_affines} == "on" ]]; then
bootstrap="--initial-transform $(dirname $(dirname ${target}))/transforms/$(basename ${_arg_inputs[${j}]} | extension_strip)_0GenericAffine.mat"
else
bootstrap=""
fi
if [[ ! -s ${_arg_output_dir}/${reg_type}/${i}/resample/$(basename ${_arg_inputs[${j}]} | extension_strip).nii.gz ]]; then
if [[ ${reg_type} =~ ^(rigid|similarity|affine)$ ]]; then
# Linear stages of registration
walltime_reg=${_arg_walltime_linear}
echo antsRegistration_affine_SyN.sh --clobber \
${_arg_float} ${_arg_fast} \
${use_histogram} \
${_arg_linear_convergence} \
${_arg_linear_shrink_factors} \
${_arg_linear_smoothing_sigmas} \
${_arg_syn_convergence} \
${_arg_syn_shrink_factors} \
${_arg_syn_smoothing_sigmas} \
--skip-nonlinear --linear-type ${reg_type} \
${_arg_mask_extract} ${_mask} \
${bootstrap} \
--convergence ${_arg_convergence} \
-o ${_arg_output_dir}/${reg_type}/${i}/resample/$(basename ${_arg_inputs[${j}]} | extension_strip).nii.gz \
${_arg_inputs[${j}]} ${target} \
${_arg_output_dir}/${reg_type}/${i}/transforms/$(basename ${_arg_inputs[${j}]} | extension_strip)_ \
>>${_arg_output_dir}/jobs/${__datetime}/${reg_type}_${i}_reg
elif [[ ${reg_type} == "nlin" ]]; then
# Full regisration affine + nlin