-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathinputs.py
82 lines (54 loc) · 2.01 KB
/
inputs.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
import tensorflow as tf
from PIL import Image
import numpy as np
import calculate_labels
NUM_IMAGES = 9201
IMAGE_SIZE = 512
np.random.seed(161) # just a randomly chosen number
def load_splits():
train = np.load("train.npy")
test = np.load("test.npy")
return (train, test)
def getImage(base, i):
image_r = Image.open("%s/IMG-R-%08d.png" % (base, i))
image_g = Image.open("%s/IMG-G-%08d.png" % (base, i))
image_b = Image.open("%s/IMG-B-%08d.png" % (base, i))
image_a = Image.open("%s/IMG-A-%08d.png" % (base, i))
r = np.array(image_r, dtype=np.float32)
a = np.array(image_a, dtype=np.float32)
np.seterr(invalid='ignore')
ndvi = (a-r)/(a+r)
ndvi = np.nan_to_num(ndvi)
ndvi = np.ceil(ndvi * 255) #scale index
image = np.array([
np.array(image_r)[..., np.newaxis],
np.array(image_g)[..., np.newaxis],
np.array(image_b)[..., np.newaxis],
np.array(ndvi)[..., np.newaxis]
])
image = np.concatenate(image, axis=-1)
return image
def getLabel(base, i):
labels = Image.open("%s/LBL-%08d.png" % (base, i))
labels = np.asarray(labels)
simplified_labels = [ [ calculate_labels.lookup[pixel] if pixel != 0 else 1 for pixel in y ] for y in labels ]
simplified_labels = np.asarray(simplified_labels, np.uint8)
return simplified_labels
def train_pipeline(batch_size, num_epochs=1):
train, _ = load_splits()
for j in range(num_epochs):
for i in range(0, len(train)-batch_size, batch_size):
img_batch = []
lbl_batch = []
for num in train[i:i+batch_size]:
img = getImage("raw_images", num)
lbl = getLabel("raw_images", num)
img_batch.append(img)
lbl_batch.append(lbl)
yield (img_batch, lbl_batch)
def test_pipeline():
_, test = load_splits()
for i in range(0, len(test)):
img = getImage("raw_images", test[i])
lbl = getLabel("raw_images", test[i])
yield ([img], [lbl])