-
Notifications
You must be signed in to change notification settings - Fork 0
/
ipopt_opti.py
91 lines (61 loc) · 1.79 KB
/
ipopt_opti.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
import casadi as ca
from numpy import sin, cos, tan, pi
pos = ca.MX.sym('pos',2)
theta = ca.MX.sym('theta')
delta = ca.MX.sym('delta')
V = ca.MX.sym('V')
# States
x = ca.vertcat(pos,theta)
# Controls
u = ca.vertcat(delta,V)
L = 1
# ODE rhs
# Bicycle model
# (S. LaValle. Planning Algorithms. Cambridge University Press, 2006, pp. 724–725.)
ode = ca.vertcat(V*ca.vertcat(cos(theta),sin(theta)),V/L*tan(delta))
# Discretize system
dt = ca.MX.sym("dt")
sys = {}
sys["x"] = x
sys["u"] = u
sys["p"] = dt
sys["ode"] = ode*dt # Time scaling
intg = ca.integrator('intg','rk',sys,0,1,{"simplify":True, "number_of_finite_elements": 4})
F = ca.Function('F',[x,u,dt],[intg(x0=x,u=u,p=dt)["xf"]],["x","u","dt"],["xnext"])
nx = x.numel()
nu = u.numel()
opti = ca.Opti()
N = 20
T0 = 10
T = opti.variable()
opti.set_initial(T,T0)
dt = T/N
X = [opti.variable(nx) for i in range(N+1)]
U = [opti.variable(nu) for i in range(N)]
# Round obstacle
p0 = ca.vertcat(0.2,5)
r0 = 1
X0 = opti.parameter(nx)
opti.set_value(X0, ca.vertcat(0,0,pi/2))
for k in range(N):
# Multiple shooting gap-closing constraint
opti.subject_to(X[k+1]==F(X[k],U[k],dt))
if k==0:
# Initial constraints
opti.subject_to(X[0]==X0)
opti.subject_to(0 <= (U[k][1] <=1)) # 0 <= V<=1
opti.subject_to(-pi/6 <= (U[k][0] <= pi/6)) # -pi/6 <= delta<= pi/6
# Obstacle avoidance
p = X[k][:2]
opti.subject_to(ca.sumsqr(p-p0)>=r0**2)
if k==N-1:
# Final constraints
opti.subject_to(X[-1][:2]==ca.vertcat(0,10))
opti.set_initial(U[k][1],1)
opti.set_initial(X[k],ca.vertcat(0,k*T0/N,pi/2))
opti.set_initial(X[-1],ca.vertcat(0,T0,pi/2))
X = ca.hcat(X)
opti.minimize(ca.sumsqr(X[0,:])+T)
opti.solver('ipopt',{"expand":True})
sol = opti.solve()
print(sol.value(X))