forked from triffid/FiveD_on_Arduino
-
Notifications
You must be signed in to change notification settings - Fork 0
/
gcode_parse.c
381 lines (340 loc) · 11.7 KB
/
gcode_parse.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
#include "gcode_parse.h"
#include <string.h>
#include "serial.h"
#include "sermsg.h"
#include "dda_queue.h"
#include "debug.h"
#include "heater.h"
#include "sersendf.h"
#include "gcode_process.h"
/*
Switch user friendly values to coding friendly values
This also affects the possible build volume. We have +/- 2^31 numbers available and as we internally measure position in steps and use a precision factor of 1000, this translates into a possible range of
2^31 mm / STEPS_PER_MM_x / 1000
for each axis. For a M6 threaded rod driven machine and 1/16 microstepping this evaluates to
2^31 mm / 200 / 16 / 1000 = 671 mm,
which is about the worst case we have. All other machines have a bigger build volume.
*/
#define STEPS_PER_M_X ((uint32_t) ((STEPS_PER_MM_X * 1000.0) + 0.5))
#define STEPS_PER_M_Y ((uint32_t) ((STEPS_PER_MM_Y * 1000.0) + 0.5))
#define STEPS_PER_M_Z ((uint32_t) ((STEPS_PER_MM_Z * 1000.0) + 0.5))
#define STEPS_PER_M_E ((uint32_t) ((STEPS_PER_MM_E * 1000.0) + 0.5))
/*
mm -> inch conversion
*/
#define STEPS_PER_IN_X ((uint32_t) ((25.4 * STEPS_PER_MM_X) + 0.5))
#define STEPS_PER_IN_Y ((uint32_t) ((25.4 * STEPS_PER_MM_Y) + 0.5))
#define STEPS_PER_IN_Z ((uint32_t) ((25.4 * STEPS_PER_MM_Z) + 0.5))
#define STEPS_PER_IN_E ((uint32_t) ((25.4 * STEPS_PER_MM_E) + 0.5))
uint8_t last_field = 0;
#define crc(a, b) (a ^ b)
decfloat read_digit __attribute__ ((__section__ (".bss")));
GCODE_COMMAND next_target __attribute__ ((__section__ (".bss")));
/*
utility functions
*/
extern const uint32_t powers[]; // defined in sermsg.c
const int32_t rounding[DECFLOAT_EXP_MAX] = {0, 5, 50, 500, 5000, 50000, 500000};
static int32_t decfloat_to_int(decfloat *df, int32_t multiplicand, uint32_t denominator) {
int32_t r = df->mantissa;
uint8_t e = df->exponent;
// e=1 means we've seen a decimal point but no digits after it, and e=2 means we've seen a decimal point with one digit so it's too high by one if not zero
if (e)
e--;
int32_t rnew1 = r * (multiplicand / denominator);
if (e)
{
int32_t rnew2 = r * (multiplicand % denominator) / denominator;
r = rnew1 + rnew2;
r = (r + rounding[e]) / powers[e];
}
else
{
int32_t rnew2 = (r * (multiplicand % denominator) + (denominator / 2)) / denominator;
r = rnew1 + rnew2;
}
return df->sign ? -r : r;
}
/****************************************************************************
* *
* Character Received - add it to our command *
* *
****************************************************************************/
void gcode_parse_char(uint8_t c) {
#ifdef ASTERISK_IN_CHECKSUM_INCLUDED
if (next_target.seen_checksum == 0)
next_target.checksum_calculated = crc(next_target.checksum_calculated, c);
#endif
// uppercase
if (c >= 'a' && c <= 'z')
c &= ~32;
// process previous field
if (last_field) {
// check if we're seeing a new field or end of line
// any character will start a new field, even invalid/unknown ones
if ((c >= 'A' && c <= 'Z') || c == '*' || (c == 10) || (c == 13)) {
switch (last_field) {
case 'G':
next_target.G = read_digit.mantissa;
if (debug_flags & DEBUG_ECHO)
serwrite_uint8(next_target.G);
break;
case 'M':
next_target.M = read_digit.mantissa;
if (debug_flags & DEBUG_ECHO)
serwrite_uint8(next_target.M);
break;
case 'X':
if (next_target.option_inches)
next_target.target.X = decfloat_to_int(&read_digit, STEPS_PER_IN_X, 1);
else
next_target.target.X = decfloat_to_int(&read_digit, STEPS_PER_M_X, 1000);
if (debug_flags & DEBUG_ECHO)
serwrite_int32(next_target.target.X);
break;
case 'Y':
if (next_target.option_inches)
next_target.target.Y = decfloat_to_int(&read_digit, STEPS_PER_IN_Y, 1);
else
next_target.target.Y = decfloat_to_int(&read_digit, STEPS_PER_M_Y, 1000);
if (debug_flags & DEBUG_ECHO)
serwrite_int32(next_target.target.Y);
break;
case 'Z':
if (next_target.option_inches)
next_target.target.Z = decfloat_to_int(&read_digit, STEPS_PER_IN_Z, 1);
else
next_target.target.Z = decfloat_to_int(&read_digit, STEPS_PER_M_Z, 1000);
if (debug_flags & DEBUG_ECHO)
serwrite_int32(next_target.target.Z);
break;
case 'E':
if (next_target.option_inches)
next_target.target.E = decfloat_to_int(&read_digit, STEPS_PER_IN_E, 1);
else
next_target.target.E = decfloat_to_int(&read_digit, STEPS_PER_M_E, 1000);
if (debug_flags & DEBUG_ECHO)
serwrite_uint32(next_target.target.E);
break;
case 'F':
// just use raw integer, we need move distance and n_steps to convert it to a useful value, so wait until we have those to convert it
if (next_target.option_inches)
next_target.target.F = decfloat_to_int(&read_digit, 254, 10);
else
next_target.target.F = decfloat_to_int(&read_digit, 1, 1);
if (debug_flags & DEBUG_ECHO)
serwrite_uint32(next_target.target.F);
break;
case 'S':
// if this is temperature, multiply by 4 to convert to quarter-degree units
// cosmetically this should be done in the temperature section,
// but it takes less code, less memory and loses no precision if we do it here instead
if ((next_target.M == 104) || (next_target.M == 109))
next_target.S = decfloat_to_int(&read_digit, 4, 1);
// if this is heater PID stuff, multiply by PID_SCALE because we divide by PID_SCALE later on
else if ((next_target.M >= 130) && (next_target.M <= 132))
next_target.S = decfloat_to_int(&read_digit, PID_SCALE, 1);
else
next_target.S = decfloat_to_int(&read_digit, 1, 1);
if (debug_flags & DEBUG_ECHO)
serwrite_uint16(next_target.S);
break;
case 'P':
// if this is dwell, multiply by 1000 to convert seconds to milliseconds
if (next_target.G == 4)
next_target.P = decfloat_to_int(&read_digit, 1000, 1);
else
next_target.P = decfloat_to_int(&read_digit, 1, 1);
if (debug_flags & DEBUG_ECHO)
serwrite_uint16(next_target.P);
break;
case 'T':
next_target.T = read_digit.mantissa;
if (debug_flags & DEBUG_ECHO)
serwrite_uint8(next_target.T);
break;
case 'N':
next_target.N = decfloat_to_int(&read_digit, 1, 1);
if (debug_flags & DEBUG_ECHO)
serwrite_uint32(next_target.N);
break;
case '*':
next_target.checksum_read = decfloat_to_int(&read_digit, 1, 1);
if (debug_flags & DEBUG_ECHO)
serwrite_uint8(next_target.checksum_read);
break;
}
// reset for next field
last_field = 0;
read_digit.sign = read_digit.mantissa = read_digit.exponent = 0;
}
}
// skip comments
if (next_target.seen_semi_comment == 0 && next_target.seen_parens_comment == 0) {
// new field?
if ((c >= 'A' && c <= 'Z') || c == '*') {
last_field = c;
if (debug_flags & DEBUG_ECHO)
serial_writechar(c);
}
// process character
switch (c) {
// each currently known command is either G or M, so preserve previous G/M unless a new one has appeared
// FIXME: same for T command
case 'G':
next_target.seen_G = 1;
next_target.seen_M = 0;
next_target.M = 0;
break;
case 'M':
next_target.seen_M = 1;
next_target.seen_G = 0;
next_target.G = 0;
break;
case 'X':
next_target.seen_X = 1;
break;
case 'Y':
next_target.seen_Y = 1;
break;
case 'Z':
next_target.seen_Z = 1;
break;
case 'E':
next_target.seen_E = 1;
break;
case 'F':
next_target.seen_F = 1;
break;
case 'S':
next_target.seen_S = 1;
break;
case 'P':
next_target.seen_P = 1;
break;
case 'T':
next_target.seen_T = 1;
break;
case 'N':
next_target.seen_N = 1;
break;
case '*':
next_target.seen_checksum = 1;
break;
// comments
case ';':
next_target.seen_semi_comment = 1;
break;
case '(':
next_target.seen_parens_comment = 1;
break;
// now for some numeracy
case '-':
read_digit.sign = 1;
// force sign to be at start of number, so 1-2 = -2 instead of -12
read_digit.exponent = 0;
read_digit.mantissa = 0;
break;
case '.':
if (read_digit.exponent == 0)
read_digit.exponent = 1;
break;
#ifdef DEBUG
case ' ':
case '\t':
case 10:
case 13:
// ignore
break;
#endif
default:
// can't do ranges in switch..case, so process actual digits here.
if ( c >= '0'
&& c <= '9'
&& read_digit.mantissa < (DECFLOAT_MANT_MAX / 10)
&& read_digit.exponent < DECFLOAT_EXP_MAX ) {
// this is simply mantissa = (mantissa * 10) + atoi(c) in different clothes
read_digit.mantissa = (read_digit.mantissa << 3) + (read_digit.mantissa << 1) + (c - '0');
if (read_digit.exponent)
read_digit.exponent++;
}
#ifdef DEBUG
else {
// invalid
serial_writechar('?');
serial_writechar(c);
serial_writechar('?');
}
#endif
}
} else if ( next_target.seen_parens_comment == 1 && c == ')')
next_target.seen_parens_comment = 0; // recognize stuff after a (comment)
#ifndef ASTERISK_IN_CHECKSUM_INCLUDED
if (next_target.seen_checksum == 0)
next_target.checksum_calculated = crc(next_target.checksum_calculated, c);
#endif
// end of line
if ((c == 10) || (c == 13)) {
if (debug_flags & DEBUG_ECHO)
serial_writechar(c);
if (
#ifdef REQUIRE_LINENUMBER
(next_target.N >= next_target.N_expected) && (next_target.seen_N == 1)
#else
1
#endif
) {
if (
#ifdef REQUIRE_CHECKSUM
((next_target.checksum_calculated == next_target.checksum_read) && (next_target.seen_checksum == 1))
#else
((next_target.checksum_calculated == next_target.checksum_read) || (next_target.seen_checksum == 0))
#endif
) {
// process
serial_writestr_P(PSTR("ok "));
process_gcode_command();
serial_writestr_P(PSTR("\n"));
// expect next line number
if (next_target.seen_N == 1)
next_target.N_expected = next_target.N + 1;
}
else {
sersendf_P(PSTR("rs %ld Expected checksum %d\n"), next_target.N_expected, next_target.checksum_calculated);
request_resend();
}
}
else {
sersendf_P(PSTR("rs %ld Expected line number %ld\n"), next_target.N_expected, next_target.N_expected);
request_resend();
}
// reset variables
next_target.seen_X = next_target.seen_Y = next_target.seen_Z = \
next_target.seen_E = next_target.seen_F = next_target.seen_S = \
next_target.seen_P = next_target.seen_T = next_target.seen_N = \
next_target.seen_M = next_target.seen_checksum = next_target.seen_semi_comment = \
next_target.seen_parens_comment = next_target.checksum_read = \
next_target.checksum_calculated = 0;
last_field = 0;
read_digit.sign = read_digit.mantissa = read_digit.exponent = 0;
// assume a G1 by default
next_target.seen_G = 1;
next_target.G = 1;
if (next_target.option_relative) {
next_target.target.X = next_target.target.Y = next_target.target.Z = 0;
next_target.target.E = 0;
}
}
}
/***************************************************************************\
* *
* Request a resend of the current line - used from various places. *
* *
* Relies on the global variable next_target.N being valid. *
* *
\***************************************************************************/
void request_resend(void) {
serial_writestr_P(PSTR("rs "));
serwrite_uint8(next_target.N);
serial_writechar('\n');
}