-
Notifications
You must be signed in to change notification settings - Fork 14
/
Copy pathutil.py
53 lines (35 loc) · 1.33 KB
/
util.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
import torch
import copy
import os
import torch.distributed as dist
import torch.nn.functional as F
def setup(rank, world_size, port):
os.environ['MASTER_ADDR'] = 'localhost'
os.environ['MASTER_PORT'] = port
# initialize the process group
dist.init_process_group("gloo", rank=rank, world_size=world_size)
def cleanup():
dist.destroy_process_group()
def load_images(images, curriculum, device):
return_images = []
head = 0
for stage in curriculum['stages']:
stage_images = images[head:head + stage['batch_size']]
stage_images = F.interpolate(stage_images, size=stage['img_size'], mode='bilinear', align_corners=True)
return_images.append(stage_images)
head += stage['batch_size']
return return_images
def copy_stot(s_param, t_param):
for s_param, param in zip(s_param.shadow_params, t_param):
if param.requires_grad:
param.data.copy_(s_param.data)
def sample_latent(shape, device, truncation=1.0):
zs = torch.randn(shape, device=device)
if truncation < 1.0:
zs = torch.zeros_like(zs) * (1 - truncation) + zs * truncation
return zs
def sample_noise(shape, device, truncation=1.0):
zs = torch.randn(shape, device=device)
if truncation < 1.0:
zs = torch.zeros_like(zs) * (1 - truncation) + zs * truncation
return zs