-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathplanes.py
552 lines (439 loc) · 16.7 KB
/
planes.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
# Small device that shows the nearest plane using the ADSB Exchange API
#
# Copyright (c) 2021 John Graham-Cumming
from PIL import Image, ImageDraw, ImageFont, ImageOps
import os
import csv
import requests
import math
import RPi.GPIO as GPIO
import time
import neopixel
import board
import subprocess
# Contains API_KEY, MY_LAT, MY_LONG and RADIUS
from planes_config import API_KEY, MY_LAT, MY_LONG, RADIUS
# Contains the north and position variables and is used to avoid
# calibration position is the current position of the stepper motor in
# the range 0 to revolution-1. north is the LED that points to north.
from planes_position import north, position
# FUNCTIONS TO READ THE BLUE PUSH BUTTON
GPIO.setmode(GPIO.BCM)
GPIO.setwarnings(False)
BUTTON_PIN = 23
GPIO.setup(BUTTON_PIN, GPIO.IN, pull_up_down=GPIO.PUD_DOWN)
def button_wait():
while GPIO.input(BUTTON_PIN) == GPIO.LOW:
pass
# FUNCTIONS FOR THE CIRCULAR STRIP OF LEDS THAT INDICATE DIRECTION TO
# THE AIRCRAFT
LED_COUNT = 24
STRIP_PIN = board.D18
strip = neopixel.NeoPixel(STRIP_PIN, LED_COUNT)
# Default brightness used for each of the RGB components of the LEDs'
# colour
led_intensity = 128
# strip_clear turns off every LED on the strip, call strip.show()
# to update the strip after calling this
def strip_clear():
for i in range(0, LED_COUNT):
strip[i] = (0, 0, 0)
# strip_spin lights up each LED on the strip in turn and finishes with
# them all off
def strip_spin():
strip_clear()
strip.show()
for i in range(0, LED_COUNT):
if i > 0:
strip[i-1] = (0, 0, 0)
strip[i] = (0, 0, led_intensity)
strip.show()
time.sleep(0.1)
strip_clear()
strip.show()
# calibrate_strip is used on start up to find the position of north
# where the device is installed. The user needs to hold the blue
# button down until the LED closest to north is illuminated. After 5
# seconds without touching the blue button the north position is fixed
# and returned by the function. This function leaves the LED pointing
# to north illuminated but in a different colour to show that the
# user's choice is confirmed
def calibrate_strip():
strip_clear()
strip.show()
button_wait()
i = 0
strip[i] = (0, 0, led_intensity)
strip.show()
c = time.time()
while (time.time() - c) < 5:
if GPIO.input(BUTTON_PIN) == GPIO.HIGH:
strip[i] = (0, 0, 0)
i = (i + 1) % LED_COUNT
strip[i] = (0, 0, led_intensity)
strip.show()
time.sleep(0.1)
c = time.time()
strip[i] = (led_intensity, 0, 0)
strip.show()
return i
# FUNCTIONS TO CONTROL THE MODEL AIRCRAFT USED TO INDICATE THE TRACK
# OF THE AIRCRAFT
# These are the GPIO pins to which the four coils are connected
coil_A_pin = 4
coil_B_pin = 17
coil_C_pin = 27
coil_D_pin = 22
# There are 'revolution' steps of the motor in a complete revolution
# and steps_per_degree steps per degree
revolution = 2038
steps_per_degree = revolution / 360.0
# This defines the sequence of coil activations for the stepper motor
# and current_step contains the step that was laste used to move the
# model aircraft
steps = 4
seq = list(range(steps))
seq[0] = [True, True, False,False]
seq[1] = [False,True, True, False]
seq[2] = [False,False,True, True]
seq[3] = [True, False,False,True]
current_step = 0
GPIO.setup(coil_A_pin, GPIO.OUT)
GPIO.setup(coil_B_pin, GPIO.OUT)
GPIO.setup(coil_C_pin, GPIO.OUT)
GPIO.setup(coil_D_pin, GPIO.OUT)
# motor_set_coils sets the coils on the stepper motor and is typically
# used with seq[] above
def motor_set_coils(a, b, c, d):
GPIO.output(coil_A_pin, a)
GPIO.output(coil_B_pin, b)
GPIO.output(coil_C_pin, c)
GPIO.output(coil_D_pin, d)
# motor_step moves the motor one step. The direction is determined by
# the clockwise parameter (True for clockwise) and this function
# updates position and current_step to keep track of the current motor
# position and which step in seq[] to use next
def motor_step(clockwise):
global position
global current_step
if clockwise:
current_step += 1
position += 1
else:
current_step -= 1
position -= 1
current_step %= steps
position %= revolution
motor_set_coils(seq[current_step][0], seq[current_step][1],
seq[current_step][2], seq[current_step][3])
# motor_off turns off all the coils on the stepper motor. Since there
# is no torque on the motor needed between movements we can switch it
# off
def motor_off():
motor_set_coils(False, False, False, False)
# plane_rotate moves the plane count steps in a clockwise or
# anti-clockwise direction with a delay of delay seconds between steps
def plane_rotate(delay, count, clockwise = True):
for i in range(count):
motor_step(clockwise)
time.sleep(delay)
motor_off()
# Since the stepper motor moves in units of 360/2038 degrees there will
# be errors in the position which accumulate over time. We keep track
# here and then fix the position when the error grows larger than a
# single step.
accumulated_error = 0.0
# plane_trak moves the plane to point to the angle trak degrees from
# north. It uses the position variable to determine the number of
# steps needed and goes by the shortest route (clockwise or
# anti-clockwise)
def plane_track(trak):
d = trak * steps_per_degree - position
delta = int(d)
global accumulated_error
accumulated_error += (d - delta)
if abs(accumulated_error) >= 1:
fix = int(accumulated_error)
delta += fix
accumulated_error -= fix
clockwise = delta > 0
delta = abs(delta)
if delta > revolution/2:
delta = revolution - delta
clockwise = not clockwise
plane_rotate(0.01, delta, clockwise)
# calibrate_plane is used to point the model aircraft to north on
# startup. The user rotates the the plane by holding down the blue
# button until it points in the right direction and then releases
# it. After five seconds with no pressure on the button the plane's
# position is set
def calibrate_plane():
button_wait()
c = time.time()
while (time.time() - c) < 5:
if GPIO.input(BUTTON_PIN) == GPIO.HIGH:
plane_rotate(0.01, 4, True)
c = time.time()
# findcsv reads a CSV file from filename and tries to find match in
# column col. If it finds it returns the row, if it doesn't it returns
# a fake row containing match. Yeah, this really should just read the
# CSV once on startup and make a dictionary but this allowed me to
# fiddle with the CSV files while the program was running
def findcsv(filename, col, match):
with open(filename, 'r') as f:
r = csv.reader(f)
for row in r:
if row[col] == match.strip():
return row
return [match, match, match, match, match]
# getplanes calls the ADBS Exchange API to get the JSON containing
# nearby planes. It returns the result of requests.get()
def getplanes():
url = "https://adsbexchange-com1.p.rapidapi.com/json/lat/%.3f/lon/%.3f/dist/%d/" % (MY_LAT, MY_LONG, RADIUS)
return requests.get(url,
headers={
"X-RapidAPI-Host": "adsbexchange-com1.p.rapidapi.com",
"X-RapidAPI-Key": API_KEY,
"Accept-Encoding": "None"
})
# FUNCTIONS FOR DRAWING TEXT AND IMAGES ON THE SCREEN
# flag tries to find the flag of the country named in country
# by looking for a file called images/country.gif (any spaces
# in the country name are turned into -). If found it inserts
# the flag into img and then returns the new x position where
# its safe to write to the image and not overwrite the flag.
# All flags are resized to 38x25 for consistency
def flag(img, country, x, y):
country_gif = 'images/' + country.lower() + '.gif'
country_gif = country_gif.replace(' ', '-')
if os.path.isfile(country_gif):
country_img = Image.open(country_gif, 'r')
img.paste(country_img.resize((38, 25)), (x, y+3))
country_img.close()
return x + 45
return x
# The number of pixels to leave between lines of text on the screen
spacing = 4
last_text = ''
# text writes a line of text to d automatically adjusting the font
# size to fit the text on screen. It returns the new y position where
# text can be written based on the size of the text and the spacing
# value. Note that it uses last_text to automatically prevent the same
# string being written twice sequentially (this is done to eliminate
# airports that have the same name as the town they are in)
#
# The up parameter determines whether the text is being written top to
# bottom on the screen (up = False) or up from the bottom (up = True)
#
# The default (preferred) font size is s (in pt) and will
# automatically be reduced until the text fits across the screen
def text(d, x, y, t, s, up = False):
global last_text
if last_text == t:
return y
last_text = t
while s >= 10:
f = ImageFont.truetype('DejaVuSansMono.ttf', s)
(w, h) = f.getsize(t)
if w <= 320-x:
if up:
y -= h
d.text((x, y), t, fill=(240, 240, 240), font=f)
if up:
return y - spacing
else:
return y + h + spacing
s -= 2
return y
# screen_backlight turns the backlight for the screen on or off
def screen_backlight(on):
if on:
v = 1
else:
v = 0
subprocess.run('echo "%d" > /sys/class/backlight/soc:backlight/brightness' % v,
shell=True)
screen_tmp = '/tmp/planes.tmp.png'
screen_file = '/tmp/planes.png'
screen_links = ['/tmp/planes%d.png' % i for i in range(1, 4)]
# screen_show takes an image in img and writes it to a file and then
# uses fbi to draw it to the screen
def screen_show(img):
# This is done to prevent fbi from getting an error if it tries to
# read one of the images it is displaying while we write it. It's
# written to a temporary file and then mv'ed into place.
img.save(screen_tmp)
subprocess.run('mv %s %s' % (screen_tmp, screen_file), shell=True)
# Determine if there are any instance of fbi running. Start one if
# there is not
running = []
try:
running = subprocess.check_output(['pgrep', 'fbi']).decode("utf-8").strip().split('\n')
except:
pass
if len(running) == 0:
subprocess.run('fbi -t 1 -T 2 -a -cachemem 0 -noverbose -d /dev/fb1 %s' % ' '.join(screen_links),
shell=True)
# screen_start sets up the screen for use. The most important thing it
# does is create three symbolic links that are fed to fbi in
# screen_show. This is a trick to get fbi to cycle through images and
# allow a single fbi instance to updated smoothly
def screen_start():
subprocess.run(['pkill', 'fbcp'])
for l in screen_links:
subprocess.run(['ln -s %s %s' % (screen_file, l)], shell=True)
# spotted is called when an aircraft has been found and it updates the
# screen, moves the model aircraft to track the actual aircraft and
# sets the LED strip to show where to look for it
def spotted(flight, airline, from_airport, from_city, from_country,
to_airport, to_city, to_country, aircraft, altitude,
bearing, trak):
strip_clear()
strip[(north+int(LED_COUNT*bearing/360)) % LED_COUNT] = (0,
led_intensity,
0)
strip.show()
img = Image.new('RGB', (320, 480), color = (0, 0, 0))
d = ImageDraw.Draw(img)
# Try to use a large font for the airline name
top = 32
if len(airline) > 15:
top = 24
y = 10
y = text(d, 10, y, airline, 32)
y = text(d, 10, y, flight, 24)
y += 20
# TODO: do this on loading the CSV
from_airport = from_airport.replace(' Airport', '')
to_airport = to_airport.replace(' Airport', '')
from_airport = from_airport.replace(' International', '')
to_airport = to_airport.replace(' International', '')
y = text(d, 10, y, from_airport, 24)
y = text(d, 10, y, from_city, 24)
from_country_offset = flag(img, from_country, 10, y)
y = text(d, from_country_offset, y, from_country, 24)
y += spacing * 2
icon = Image.open('images/down.png', 'r')
img.paste(icon, (10, y), icon)
(w, h) = icon.size
icon.close()
y += h + spacing
y = text(d, 10, y, to_airport, 24)
y = text(d, 10, y, to_city, 24)
to_country_offset = flag(img, to_country, 10, y)
y = text(d, to_country_offset, y, to_country, 24)
y = 480 - spacing
y = text(d, 10, y, altitude + ' ft', 24, True)
y = text(d, 10, y, aircraft, 24, True)
y = text(d, 10, y, str(round(trak)) + '°', 24, True)
img = ImageOps.flip(img)
img = ImageOps.mirror(img)
screen_show(img)
screen_backlight(True)
plane_track(trak)
save_position()
# save_position saves the current plane position and calibrated north
# in planes_position.py so that when the program reloads it can avoid
# calibration
def save_position():
f = open('planes_position.py', 'w')
f.writelines(['north = %d\n' % north, 'position = %d\n' % position])
f.close()
# haversine works out the distance on the Earth's surface between
# two points given a latitude and longitude.
def haversine(la1, lo1, la2, lo2):
phi1 = math.radians(la1)
phi2 = math.radians(la2)
delta_phi = math.radians(la2-la1)
delta_lambda = math.radians(lo2-lo1)
a = math.sin(delta_phi/2.0) ** 2 + \
math.cos(phi1) * math.cos(phi2) * \
math.sin(delta_lambda/2.0) ** 2
return 2 * math.atan2(math.sqrt(a), math.sqrt(1-a))
# distance returns the distance to an aircraft
def distance(a):
return haversine(MY_LAT, MY_LONG, float(a['lat']), float(a['lon']))
# bearing works out the bearing of one lat/long from another
def bearing(la1, lo1, la2, lo2):
lat1 = math.radians(la1)
lat2 = math.radians(la2)
diff = math.radians(lo2 - lo1)
x = math.sin(diff) * math.cos(lat2)
y = math.cos(lat1) * math.sin(lat2) - (math.sin(lat1)
* math.cos(lat2) * math.cos(diff))
b = math.degrees(math.atan2(x, y))
return (b + 360) % 360
# blank is used to ensure that the screen and LEDs are off when
# there's no activity. It shuts off the screen after drawing black
# image on it and shuts off the LEDs.
def blank():
strip_clear()
strip.show()
img = Image.new('RGB', (320, 480), color = (0, 0, 0))
d = ImageDraw.Draw(img)
screen_show(img)
screen_backlight(False)
# required contains a list of fields that must be present and
# non-empty in the returned JSON
required = ['call', 'type', 'opicao', 'from', 'to', 'lat', 'lon',
'trak', 'gnd']
strip_spin()
if north == -1:
north = calibrate_strip()
calibrate_plane()
position = 0
save_position()
strip_clear()
strip.show()
screen_start()
blank()
# The default update_delay is 30 seconds. Until an aircraft is seen
# the code checks once every 30 seconds for new aircraft; once
# tracking a plane it updates every ten seconds. Once there are no
# more planes it goes back to checking every 30 seconds
no_planes_delay = 30
tracking_plane_delay = 10
update_delay = 0
while True:
time.sleep(update_delay)
planes = getplanes()
j = planes.json()
if j is None or j['ac'] is None:
blank()
continue
# Build near so that it contains aircraft that have all the fields
# in required and are not on the ground
near = []
for ac in j['ac']:
ok = True
for r in required:
if r not in ac or ac[r].strip() == '':
ok = False
break
if ok and ac['gnd'] == '0':
near.append(ac)
# If there are aircraft then sort them by distance from the device
# and display the nearest
if len(near) > 0:
near.sort(key=distance)
ac = near[0]
flight = ac['call']
plane = findcsv('planes.dat', 2, ac['type'])[0]
airline = findcsv('airlines.dat', 4, ac['opicao'])[1]
altitude = ac['alt']
from_ = findcsv('airports.dat', 4, ac['from'][:4])
from_airport = from_[1]
from_city = from_[2]
from_country = from_[3]
to_ = findcsv('airports.dat', 4, ac['to'][:4])
to_airport = to_[1]
to_city = to_[2]
to_country = to_[3]
b = bearing(MY_LAT, MY_LONG, float(ac['lat']), float(ac['lon']))
trak = float(ac['trak'])
spotted(flight, airline, from_airport, from_city, from_country,
to_airport, to_city, to_country, plane, altitude, b, trak)
update_delay = tracking_plane_delay
else:
update_delay = no_planes_delay
blank()