forked from samtools/samtools
-
Notifications
You must be signed in to change notification settings - Fork 0
/
phase.c
843 lines (796 loc) · 29.4 KB
/
phase.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
/* phase.c -- phase subcommand.
Copyright (C) 2011 Broad Institute.
Copyright (C) 2013-2016, 2019 Genome Research Ltd.
Author: Heng Li <lh3@sanger.ac.uk>
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
DEALINGS IN THE SOFTWARE. */
#include <config.h>
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <stdint.h>
#include <math.h>
#include <zlib.h>
#include "htslib/hts.h"
#include "htslib/sam.h"
#include "htslib/kstring.h"
#include "sam_opts.h"
#include "samtools.h"
#include "htslib/hts_os.h"
#include "htslib/kseq.h"
KSTREAM_INIT(gzFile, gzread, 16384)
#define MAX_VARS 256
#define FLIP_PENALTY 2
#define FLIP_THRES 4
#define MASK_THRES 3
#define FLAG_FIX_CHIMERA 0x1
#define FLAG_LIST_EXCL 0x4
#define FLAG_DROP_AMBI 0x8
typedef struct {
// configurations, initialized in the main function
int flag, k, min_baseQ, min_varLOD, max_depth, no_pg;
// other global variables
int vpos_shift;
samFile* fp;
sam_hdr_t* fp_hdr;
char *pre, *arg_list;
char *out_name[3];
samFile* out[3];
sam_hdr_t* out_hdr[3];
// alignment queue
int n, m;
bam1_t **b;
} phaseg_t;
typedef struct {
int8_t seq[MAX_VARS]; // TODO: change to dynamic memory allocation!
int vpos, beg, end;
uint32_t vlen:16, single:1, flip:1, phase:1, phased:1, ambig:1;
uint32_t in:16, out:16; // in-phase and out-phase
} frag_t, *frag_p;
#define rseq_lt(a,b) ((a)->vpos < (b)->vpos)
#include "htslib/khash.h"
KHASH_SET_INIT_INT64(set64)
KHASH_MAP_INIT_INT64(64, frag_t)
typedef khash_t(64) nseq_t;
#include "htslib/ksort.h"
KSORT_INIT(rseq, frag_p, rseq_lt)
static inline uint64_t X31_hash_string(const char *s)
{
uint64_t h = *s;
if (h) for (++s ; *s; ++s) h = (h << 5) - h + *s;
return h;
}
static void count1(int l, const uint8_t *seq, int *cnt)
{
int i, j, n_ambi;
uint32_t z, x;
if (seq[l-1] == 0) return; // do nothing is the last base is ambiguous
for (i = n_ambi = 0; i < l; ++i) // collect ambiguous bases
if (seq[i] == 0) ++n_ambi;
if (l - n_ambi <= 1) return; // only one SNP
for (x = 0; x < 1u<<n_ambi; ++x) { // count
for (i = j = 0, z = 0; i < l; ++i) {
int c;
if (seq[i]) c = seq[i] - 1;
else {
c = x>>j&1;
++j;
}
z = z<<1 | c;
}
++cnt[z];
}
}
static int **count_all(int l, int vpos, nseq_t *hash)
{
khint_t k;
int i, j, **cnt = NULL;
uint8_t *seq = NULL;
size_t cnt_sz = ((size_t)1) << l;
if (cnt_sz > SSIZE_MAX / sizeof(int) / vpos) {
errno = ENOMEM;
goto fail;
}
seq = calloc(l, 1);
if (!seq) goto fail;
cnt = calloc(vpos, sizeof(int*));
if (!cnt) goto fail;
for (i = 0; i < vpos; ++i) {
cnt[i] = calloc(cnt_sz, sizeof(int));
if (!cnt[i]) goto fail;
}
for (k = 0; k < kh_end(hash); ++k) {
if (kh_exist(hash, k)) {
frag_t *f = &kh_val(hash, k);
if (f->vpos >= vpos || f->single) continue; // out of region; or singleton
if (f->vlen == 1) { // such reads should be flagged as deleted previously if everything is right
f->single = 1;
continue;
}
for (j = 1; j < f->vlen; ++j) {
for (i = 0; i < l; ++i)
seq[i] = j < l - 1 - i? 0 : f->seq[j - (l - 1 - i)];
count1(l, seq, cnt[f->vpos + j]);
}
}
}
free(seq);
return cnt;
fail:
free(seq);
if (cnt) {
for (i = 0; i < vpos; i++)
free(cnt[i]);
free(cnt);
}
print_error_errno("phase", "Couldn't allocate memory for counts");
return NULL;
}
// phasing
static int8_t *dynaprog(int l, int vpos, int **w)
{
int *f[2], *curr, *prev, max, i;
int8_t **b, *h = 0;
uint32_t x, z = 1u<<(l-1), mask = (1u<<l) - 1;
f[0] = calloc(z, sizeof(int));
f[1] = calloc(z, sizeof(int));
b = calloc(vpos, sizeof(int8_t*));
prev = f[0]; curr = f[1];
// fill the backtrack matrix
for (i = 0; i < vpos; ++i) {
int *wi = w[i], *tmp;
int8_t *bi;
bi = b[i] = calloc(z, 1);
/* In the following, x is the current state, which is the
* lexicographically smaller local haplotype. xc is the complement of
* x, or the larger local haplotype; y0 and y1 are the two predecessors
* of x. */
for (x = 0; x < z; ++x) { // x0 is the smaller
uint32_t y0, y1, xc;
int c0, c1;
xc = ~x&mask; y0 = x>>1; y1 = xc>>1;
c0 = prev[y0] + wi[x] + wi[xc];
c1 = prev[y1] + wi[x] + wi[xc];
if (c0 > c1) bi[x] = 0, curr[x] = c0;
else bi[x] = 1, curr[x] = c1;
}
tmp = prev; prev = curr; curr = tmp; // swap
}
{ // backtrack
uint32_t max_x = 0;
int which = 0;
h = calloc(vpos, 1);
for (x = 0, max = 0, max_x = 0; x < z; ++x)
if (prev[x] > max) max = prev[x], max_x = x;
for (i = vpos - 1, x = max_x; i >= 0; --i) {
h[i] = which? (~x&1) : (x&1);
which = b[i][x]? !which : which;
x = b[i][x]? (~x&mask)>>1 : x>>1;
}
}
// free
for (i = 0; i < vpos; ++i) free(b[i]);
free(f[0]); free(f[1]); free(b);
return h;
}
// phase each fragment
static uint64_t *fragphase(int vpos, const int8_t *path, nseq_t *hash, int flip)
{
khint_t k;
uint64_t *pcnt;
uint32_t *left, *rght, max;
left = rght = 0; max = 0;
pcnt = calloc(vpos, 8);
for (k = 0; k < kh_end(hash); ++k) {
if (kh_exist(hash, k)) {
int i, c[2];
frag_t *f = &kh_val(hash, k);
if (f->vpos >= vpos) continue;
// get the phase
c[0] = c[1] = 0;
for (i = 0; i < f->vlen; ++i) {
if (f->seq[i] == 0) continue;
++c[f->seq[i] == path[f->vpos + i] + 1? 0 : 1];
}
f->phase = c[0] > c[1]? 0 : 1;
f->in = c[f->phase]; f->out = c[1 - f->phase];
f->phased = f->in == f->out? 0 : 1;
f->ambig = (f->in && f->out && f->out < 3 && f->in <= f->out + 1)? 1 : 0;
// fix chimera
f->flip = 0;
if (flip && c[0] >= 3 && c[1] >= 3) {
int sum[2], m, mi, md;
if (f->vlen > max) { // enlarge the array
max = f->vlen;
kroundup32(max);
left = realloc(left, max * 4);
rght = realloc(rght, max * 4);
}
for (i = 0, sum[0] = sum[1] = 0; i < f->vlen; ++i) { // get left counts
if (f->seq[i]) {
int c = f->phase? 2 - f->seq[i] : f->seq[i] - 1;
++sum[c == path[f->vpos + i]? 0 : 1];
}
left[i] = sum[1]<<16 | sum[0];
}
for (i = f->vlen - 1, sum[0] = sum[1] = 0; i >= 0; --i) { // get right counts
if (f->seq[i]) {
int c = f->phase? 2 - f->seq[i] : f->seq[i] - 1;
++sum[c == path[f->vpos + i]? 0 : 1];
}
rght[i] = sum[1]<<16 | sum[0];
}
// find the best flip point
for (i = m = 0, mi = -1, md = -1; i < f->vlen - 1; ++i) {
int a[2];
a[0] = (left[i]&0xffff) + (rght[i+1]>>16&0xffff) - (rght[i+1]&0xffff) * FLIP_PENALTY;
a[1] = (left[i]>>16&0xffff) + (rght[i+1]&0xffff) - (rght[i+1]>>16&0xffff) * FLIP_PENALTY;
if (a[0] > a[1]) {
if (a[0] > m) m = a[0], md = 0, mi = i;
} else {
if (a[1] > m) m = a[1], md = 1, mi = i;
}
}
if (m - c[0] >= FLIP_THRES && m - c[1] >= FLIP_THRES) { // then flip
f->flip = 1;
if (md == 0) { // flip the tail
for (i = mi + 1; i < f->vlen; ++i)
if (f->seq[i] == 1) f->seq[i] = 2;
else if (f->seq[i] == 2) f->seq[i] = 1;
} else { // flip the head
for (i = 0; i <= mi; ++i)
if (f->seq[i] == 1) f->seq[i] = 2;
else if (f->seq[i] == 2) f->seq[i] = 1;
}
}
}
// update pcnt[]
if (!f->single) {
for (i = 0; i < f->vlen; ++i) {
int c;
if (f->seq[i] == 0) continue;
c = f->phase? 2 - f->seq[i] : f->seq[i] - 1;
if (c == path[f->vpos + i]) {
if (f->phase == 0) ++pcnt[f->vpos + i];
else pcnt[f->vpos + i] += 1ull<<32;
} else {
if (f->phase == 0) pcnt[f->vpos + i] += 1<<16;
else pcnt[f->vpos + i] += 1ull<<48;
}
}
}
}
}
free(left); free(rght);
return pcnt;
}
static uint64_t *genmask(int vpos, const uint64_t *pcnt, int *_n)
{
int i, max = 0, max_i = -1, m = 0, n = 0, beg = 0, score = 0;
uint64_t *list = 0;
for (i = 0; i < vpos; ++i) {
uint64_t x = pcnt[i];
int c[4], pre = score, s;
c[0] = x&0xffff; c[1] = x>>16&0xffff; c[2] = x>>32&0xffff; c[3] = x>>48&0xffff;
s = (c[1] + c[3] == 0)? -(c[0] + c[2]) : (c[1] + c[3] - 1);
if (c[3] > c[2]) s += c[3] - c[2];
if (c[1] > c[0]) s += c[1] - c[0];
score += s;
if (score < 0) score = 0;
if (pre == 0 && score > 0) beg = i; // change from zero to non-zero
if ((i == vpos - 1 || score == 0) && max >= MASK_THRES) {
if (n == m) {
m = m? m<<1 : 4;
list = realloc(list, m * 8);
}
list[n++] = (uint64_t)beg<<32 | max_i;
i = max_i; // reset i to max_i
score = 0;
} else if (score > max) max = score, max_i = i;
if (score == 0) max = 0;
}
*_n = n;
return list;
}
// trim heading and tailing ambiguous bases; mark deleted and remove sequence
static int clean_seqs(int vpos, nseq_t *hash)
{
khint_t k;
int ret = 0;
for (k = 0; k < kh_end(hash); ++k) {
if (kh_exist(hash, k)) {
frag_t *f = &kh_val(hash, k);
int beg, end, i;
if (f->vpos >= vpos) {
ret = 1;
continue;
}
for (i = 0; i < f->vlen; ++i)
if (f->seq[i] != 0) break;
beg = i;
for (i = f->vlen - 1; i >= 0; --i)
if (f->seq[i] != 0) break;
end = i + 1;
if (end - beg <= 0) kh_del(64, hash, k);
else {
if (beg != 0) memmove(f->seq, f->seq + beg, end - beg);
f->vpos += beg; f->vlen = end - beg;
f->single = f->vlen == 1? 1 : 0;
}
}
}
return ret;
}
static int dump_aln(phaseg_t *g, int min_pos, const nseq_t *hash)
{
int i, is_flip, drop_ambi;
drop_ambi = g->flag & FLAG_DROP_AMBI;
is_flip = (drand48() < 0.5);
for (i = 0; i < g->n; ++i) {
int end, which;
uint64_t key;
khint_t k;
bam1_t *b = g->b[i];
key = X31_hash_string(bam_get_qname(b));
end = bam_endpos(b);
if (end > min_pos) break;
k = kh_get(64, hash, key);
if (k == kh_end(hash)) which = 3;
else {
frag_t *f = &kh_val(hash, k);
if (f->ambig) which = drop_ambi? 2 : 3;
else if (f->phased && f->flip) which = 2;
else if (f->phased == 0) which = 3;
else { // phased and not flipped
char c = 'Y';
which = f->phase;
bam_aux_append(b, "ZP", 'A', 1, (uint8_t*)&c);
}
if (which < 2 && is_flip) which = 1 - which; // increase the randomness
}
if (which == 3) which = (drand48() < 0.5);
if (sam_write1(g->out[which], g->out_hdr[which], b) < 0) {
print_error_errno("phase", "error writing to '%s'", g->out_name[which]);
return -1;
}
bam_destroy1(b);
g->b[i] = 0;
}
memmove(g->b, g->b + i, (g->n - i) * sizeof(void*));
g->n -= i;
return 0;
}
static int phase(phaseg_t *g, const char *chr, int vpos, uint64_t *cns, nseq_t *hash)
{
int i, j, n_seqs = kh_size(hash), n_masked = 0, min_pos;
khint_t k;
frag_t **seqs;
int8_t *path, *sitemask;
uint64_t *pcnt, *regmask;
if (vpos == 0) return 0;
i = clean_seqs(vpos, hash); // i is true if hash has an element with its vpos >= vpos
min_pos = i? cns[vpos]>>32 : 0x7fffffff;
if (vpos == 1) {
printf("PS\t%s\t%d\t%d\n", chr, (int)(cns[0]>>32) + 1, (int)(cns[0]>>32) + 1);
printf("M0\t%s\t%d\t%d\t%c\t%c\t%d\t0\t0\t0\t0\n//\n", chr, (int)(cns[0]>>32) + 1, (int)(cns[0]>>32) + 1,
"ACGTX"[cns[0]&3], "ACGTX"[cns[0]>>16&3], g->vpos_shift + 1);
for (k = 0; k < kh_end(hash); ++k) {
if (kh_exist(hash, k)) {
frag_t *f = &kh_val(hash, k);
if (f->vpos) continue;
f->flip = 0;
if (f->seq[0] == 0) f->phased = 0;
else f->phased = 1, f->phase = f->seq[0] - 1;
}
}
if (dump_aln(g, min_pos, hash) < 0) return -1;
++g->vpos_shift;
return 1;
}
{ // phase
int **cnt;
uint64_t *mask;
printf("PS\t%s\t%d\t%d\n", chr, (int)(cns[0]>>32) + 1, (int)(cns[vpos-1]>>32) + 1);
sitemask = calloc(vpos, 1);
cnt = count_all(g->k, vpos, hash);
if (!cnt) return -1;
path = dynaprog(g->k, vpos, cnt);
for (i = 0; i < vpos; ++i) free(cnt[i]);
free(cnt);
pcnt = fragphase(vpos, path, hash, 0); // do not fix chimeras when masking
mask = genmask(vpos, pcnt, &n_masked);
regmask = calloc(n_masked, 8);
for (i = 0; i < n_masked; ++i) {
regmask[i] = cns[mask[i]>>32]>>32<<32 | cns[(uint32_t)mask[i]]>>32;
for (j = mask[i]>>32; j <= (int32_t)mask[i]; ++j)
sitemask[j] = 1;
}
free(mask);
if (g->flag & FLAG_FIX_CHIMERA) {
free(pcnt);
pcnt = fragphase(vpos, path, hash, 1);
}
}
for (i = 0; i < n_masked; ++i)
printf("FL\t%s\t%d\t%d\n", chr, (int)(regmask[i]>>32) + 1, (int)regmask[i] + 1);
for (i = 0; i < vpos; ++i) {
uint64_t x = pcnt[i];
int8_t c[2];
c[0] = (cns[i]&0xffff)>>2 == 0? 4 : (cns[i]&3);
c[1] = (cns[i]>>16&0xffff)>>2 == 0? 4 : (cns[i]>>16&3);
printf("M%d\t%s\t%d\t%d\t%c\t%c\t%d\t%d\t%d\t%d\t%d\n", sitemask[i]+1, chr, (int)(cns[0]>>32) + 1, (int)(cns[i]>>32) + 1, "ACGTX"[c[path[i]]], "ACGTX"[c[1-path[i]]],
i + g->vpos_shift + 1, (int)(x&0xffff), (int)(x>>16&0xffff), (int)(x>>32&0xffff), (int)(x>>48&0xffff));
}
free(path); free(pcnt); free(regmask); free(sitemask);
seqs = calloc(n_seqs, sizeof(frag_t*));
for (k = 0, i = 0; k < kh_end(hash); ++k)
if (kh_exist(hash, k) && kh_val(hash, k).vpos < vpos && !kh_val(hash, k).single)
seqs[i++] = &kh_val(hash, k);
n_seqs = i;
ks_introsort_rseq(n_seqs, seqs);
for (i = 0; i < n_seqs; ++i) {
frag_t *f = seqs[i];
printf("EV\t0\t%s\t%d\t40\t%dM\t*\t0\t0\t", chr, f->vpos + 1 + g->vpos_shift, f->vlen);
for (j = 0; j < f->vlen; ++j) {
uint32_t c = cns[f->vpos + j];
if (f->seq[j] == 0) putchar('N');
else putchar("ACGT"[f->seq[j] == 1? (c&3) : (c>>16&3)]);
}
printf("\t*\tYP:i:%d\tYF:i:%d\tYI:i:%d\tYO:i:%d\tYS:i:%d\n", f->phase, f->flip, f->in, f->out, f->beg+1);
}
free(seqs);
printf("//\n");
fflush(stdout);
g->vpos_shift += vpos;
if (dump_aln(g, min_pos, hash) < 0) return -1;
return vpos;
}
static void update_vpos(int vpos, nseq_t *hash)
{
khint_t k;
for (k = 0; k < kh_end(hash); ++k) {
if (kh_exist(hash, k)) {
frag_t *f = &kh_val(hash, k);
if (f->vpos < vpos) kh_del(64, hash, k); // TODO: if frag_t::seq is allocated dynamically, free it
else f->vpos -= vpos;
}
}
}
static nseq_t *shrink_hash(nseq_t *hash) // TODO: to implement
{
return hash;
}
static int readaln(void *data, bam1_t *b)
{
phaseg_t *g = (phaseg_t*)data;
int ret;
while (1)
{
ret = sam_read1(g->fp, g->fp_hdr, b);
if (ret < 0) break;
if ( b->core.flag & (BAM_FUNMAP | BAM_FSECONDARY | BAM_FQCFAIL | BAM_FDUP) ) continue;
if ( g->pre ) {
if (g->n == g->m) {
g->m = g->m? g->m<<1 : 16;
g->b = realloc(g->b, g->m * sizeof(bam1_t*));
}
g->b[g->n++] = bam_dup1(b);
}
break;
}
return ret;
}
static khash_t(set64) *loadpos(const char *fn, sam_hdr_t *h)
{
gzFile fp;
kstream_t *ks;
int ret, dret;
kstring_t *str;
khash_t(set64) *hash;
fp = strcmp(fn, "-")? gzopen(fn, "r") : gzdopen(fileno(stdin), "r");
if (fp == NULL) {
print_error_errno("phase", "Couldn't open site file '%s'", fn);
return NULL;
}
hash = kh_init(set64);
str = calloc(1, sizeof(kstring_t));
ks = ks_init(fp);
while (ks_getuntil(ks, 0, str, &dret) >= 0) {
int tid = bam_name2id(h, str->s);
if (tid >= 0 && dret != '\n') {
if (ks_getuntil(ks, 0, str, &dret) >= 0) {
uint64_t x = (uint64_t)tid<<32 | (atoi(str->s) - 1);
kh_put(set64, hash, x, &ret);
} else break;
}
if (dret != '\n') while ((dret = ks_getc(ks)) > 0 && dret != '\n');
if (dret < 0) break;
}
ks_destroy(ks);
gzclose(fp);
free(str->s); free(str);
return hash;
}
static int gl2cns(float q[16])
{
int i, j, min_ij;
float min, min2;
min = min2 = 1e30; min_ij = -1;
for (i = 0; i < 4; ++i) {
for (j = i; j < 4; ++j) {
if (q[i<<2|j] < min) min_ij = i<<2|j, min2 = min, min = q[i<<2|j];
else if (q[i<<2|j] < min2) min2 = q[i<<2|j];
}
}
return (min_ij>>2&3) == (min_ij&3)? 0 : 1<<18 | (min_ij>>2&3)<<16 | (min_ij&3) | (int)(min2 - min + .499) << 2;
}
static int start_output(phaseg_t *g, int c, const char *middle, const htsFormat *fmt)
{
kstring_t s = { 0, 0, NULL };
ksprintf(&s, "%s.%s.%s", g->pre, middle, hts_format_file_extension(fmt));
g->out_name[c] = ks_release(&s);
g->out[c] = sam_open_format(g->out_name[c], "wb", fmt);
if (! g->out[c]) {
print_error_errno("phase", "Failed to open output file '%s'", g->out_name[c]);
return -1;
}
g->out_hdr[c] = sam_hdr_dup(g->fp_hdr);
if (!g->no_pg && sam_hdr_add_pg(g->out_hdr[c], "samtools",
"VN", samtools_version(),
g->arg_list ? "CL": NULL,
g->arg_list ? g->arg_list : NULL,
NULL)) {
print_error("phase", "failed to add PG line to header");
return -1;
}
if (sam_hdr_write(g->out[c], g->out_hdr[c]) < 0) {
print_error_errno("phase", "Failed to write header for '%s'", g->out_name[c]);
return -1;
}
return 0;
}
int main_phase(int argc, char *argv[])
{
int c, tid, pos, vpos = 0, n, lasttid = -1, max_vpos = 0, usage = 0;
int status = EXIT_SUCCESS;
const bam_pileup1_t *plp;
bam_plp_t iter;
nseq_t *seqs;
uint64_t *cns = 0;
phaseg_t g;
char *fn_list = 0;
khash_t(set64) *set = 0;
errmod_t *em;
uint16_t *bases;
sam_global_args ga = SAM_GLOBAL_ARGS_INIT;
static const struct option lopts[] = {
SAM_OPT_GLOBAL_OPTIONS('-', 0, 0, 0, 0, '-'),
{"min-BQ", required_argument, NULL, 'Q'},
{"min-bq", required_argument, NULL, 'Q'},
{"no-PG", no_argument, NULL, 1},
{ NULL, 0, NULL, 0 }
};
// FIXME Leaks galore in the case of error returns
memset(&g, 0, sizeof(phaseg_t));
g.flag = FLAG_FIX_CHIMERA;
g.min_varLOD = 37; g.k = 13; g.min_baseQ = 13; g.max_depth = 256;
while ((c = getopt_long(argc, argv, "Q:eFq:k:b:l:D:A", lopts, NULL)) >= 0) {
switch (c) {
case 'D': g.max_depth = atoi(optarg); break;
case 'q': g.min_varLOD = atoi(optarg); break;
case 'Q': g.min_baseQ = atoi(optarg); break;
case 'k': g.k = atoi(optarg); break;
case 'F': g.flag &= ~FLAG_FIX_CHIMERA; break;
case 'e': g.flag |= FLAG_LIST_EXCL; break;
case 'A': g.flag |= FLAG_DROP_AMBI; break;
case 'b': g.pre = strdup(optarg); break;
case 'l': fn_list = strdup(optarg); break;
case 1: g.no_pg = 1; break;
default: if (parse_sam_global_opt(c, optarg, lopts, &ga) == 0) break;
/* else fall-through */
case '?': usage=1; break;
}
if (usage) break;
}
if (usage || argc == optind) {
fprintf(stderr, "\n");
fprintf(stderr, "Usage: samtools phase [options] <in.bam>\n\n");
fprintf(stderr, "Options: -k INT block length [%d]\n", g.k);
fprintf(stderr, " -b STR prefix of BAMs to output [null]\n");
fprintf(stderr, " -q INT min het phred-LOD [%d]\n", g.min_varLOD);
fprintf(stderr, " -Q, --min-BQ INT\n"
" min base quality in het calling [%d]\n", g.min_baseQ);
fprintf(stderr, " -D INT max read depth [%d]\n", g.max_depth);
// fprintf(stderr, " -l FILE list of sites to phase [null]\n");
fprintf(stderr, " -F do not attempt to fix chimeras\n");
fprintf(stderr, " -A drop reads with ambiguous phase\n");
fprintf(stderr, " --no-PG do not add a PG line\n");
// fprintf(stderr, " -e do not discover SNPs (effective with -l)\n");
fprintf(stderr, "\n");
sam_global_opt_help(stderr, "-....--.");
return 1;
}
g.fp = sam_open_format(argv[optind], "r", &ga.in);
if (!g.fp) {
print_error_errno("phase", "Couldn't open '%s'", argv[optind]);
return 1;
}
g.fp_hdr = sam_hdr_read(g.fp);
if (g.fp_hdr == NULL) {
fprintf(stderr, "[%s] Failed to read header for '%s'\n",
__func__, argv[optind]);
return 1;
}
if (!g.no_pg && !(g.arg_list = stringify_argv(argc+1, argv-1))) {
print_error("phase", "failed to create arg_list");
return 1;
}
if (fn_list) { // read the list of sites to phase
set = loadpos(fn_list, g.fp_hdr);
if (set == NULL) return 1;
free(fn_list);
} else g.flag &= ~FLAG_LIST_EXCL;
if (g.pre) { // open BAMs to write
if (ga.out.format == unknown_format)
ga.out.format = bam; // default via "wb".
// Open each output file g.out[0..2], dupping and writing the header
if (start_output(&g, 0, "0", &ga.out) < 0 ||
start_output(&g, 1, "1", &ga.out) < 0 ||
start_output(&g, 2, "chimera", &ga.out) < 0) return 1;
}
iter = bam_plp_init(readaln, &g);
g.vpos_shift = 0;
seqs = kh_init(64);
em = errmod_init(1. - 0.83);
bases = calloc(g.max_depth, 2);
printf("CC\n");
printf("CC\tDescriptions:\nCC\n");
printf("CC\t CC comments\n");
printf("CC\t PS start of a phase set\n");
printf("CC\t FL filtered region\n");
printf("CC\t M[012] markers; 0 for singletons, 1 for phased and 2 for filtered\n");
printf("CC\t EV supporting reads; SAM format\n");
printf("CC\t // end of a phase set\nCC\n");
printf("CC\tFormats of PS, FL and M[012] lines (1-based coordinates):\nCC\n");
printf("CC\t PS chr phaseSetStart phaseSetEnd\n");
printf("CC\t FL chr filterStart filterEnd\n");
printf("CC\t M? chr PS pos allele0 allele1 hetIndex #supports0 #errors0 #supp1 #err1\n");
printf("CC\nCC\n");
fflush(stdout);
while ((plp = bam_plp_auto(iter, &tid, &pos, &n)) != 0) {
int i, k, c, tmp, dophase = 1, in_set = 0;
float q[16];
if (tid < 0) break;
if (tid != lasttid) { // change of chromosome
g.vpos_shift = 0;
if (lasttid >= 0) {
seqs = shrink_hash(seqs);
if (phase(&g, sam_hdr_tid2name(g.fp_hdr, lasttid),
vpos, cns, seqs) < 0) {
return 1;
}
update_vpos(0x7fffffff, seqs);
}
lasttid = tid;
vpos = 0;
}
if (set && kh_get(set64, set, (uint64_t)tid<<32 | pos) != kh_end(set)) in_set = 1;
if (n > g.max_depth) continue; // do not proceed if the depth is too high
// fill the bases array and check if there is a variant
for (i = k = 0; i < n; ++i) {
const bam_pileup1_t *p = plp + i;
uint8_t *seq;
int q, baseQ, b;
if (p->is_del || p->is_refskip) continue;
baseQ = bam_get_qual(p->b)[p->qpos];
if (baseQ < g.min_baseQ) continue;
seq = bam_get_seq(p->b);
b = seq_nt16_int[bam_seqi(seq, p->qpos)];
if (b > 3) continue;
q = baseQ < p->b->core.qual? baseQ : p->b->core.qual;
if (q < 4) q = 4;
if (q > 63) q = 63;
bases[k++] = q<<5 | (int)bam_is_rev(p->b)<<4 | b;
}
if (k == 0) continue;
errmod_cal(em, k, 4, bases, q); // compute genotype likelihood
c = gl2cns(q); // get the consensus
// tell if to proceed
if (set && (g.flag&FLAG_LIST_EXCL) && !in_set) continue; // not in the list
if (!in_set && (c&0xffff)>>2 < g.min_varLOD) continue; // not a variant
// add the variant
if (vpos == max_vpos) {
max_vpos = max_vpos? max_vpos<<1 : 128;
cns = realloc(cns, max_vpos * 8);
}
cns[vpos] = (uint64_t)pos<<32 | c;
for (i = 0; i < n; ++i) {
const bam_pileup1_t *p = plp + i;
uint64_t key;
khint_t k;
uint8_t *seq = bam_get_seq(p->b);
frag_t *f;
if (p->is_del || p->is_refskip) continue;
if (p->b->core.qual == 0) continue;
// get the base code
c = seq_nt16_int[bam_seqi(seq, p->qpos)];
if (c == (cns[vpos]&3)) c = 1;
else if (c == (cns[vpos]>>16&3)) c = 2;
else c = 0;
// write to seqs
key = X31_hash_string(bam_get_qname(p->b));
k = kh_put(64, seqs, key, &tmp);
f = &kh_val(seqs, k);
if (tmp == 0) { // present in the hash table
if (vpos - f->vpos + 1 < MAX_VARS) {
f->vlen = vpos - f->vpos + 1;
f->seq[f->vlen-1] = c;
f->end = bam_endpos(p->b);
}
dophase = 0;
} else { // absent
memset(f->seq, 0, MAX_VARS);
f->beg = p->b->core.pos;
f->end = bam_endpos(p->b);
f->vpos = vpos, f->vlen = 1, f->seq[0] = c, f->single = f->phased = f->flip = f->ambig = 0;
}
}
if (dophase) {
seqs = shrink_hash(seqs);
if (phase(&g, sam_hdr_tid2name(g.fp_hdr, tid), vpos, cns, seqs) < 0) {
return 1;
}
update_vpos(vpos, seqs);
cns[0] = cns[vpos];
vpos = 0;
}
++vpos;
}
if (tid >= 0) {
if (phase(&g, sam_hdr_tid2name(g.fp_hdr, tid), vpos, cns, seqs) < 0) {
return 1;
}
}
if (n < 0) {
print_error("phase", "error reading from '%s'", argv[optind]);
status = EXIT_FAILURE;
}
sam_hdr_destroy(g.fp_hdr);
bam_plp_destroy(iter);
sam_close(g.fp);
kh_destroy(64, seqs);
kh_destroy(set64, set);
free(cns);
errmod_destroy(em);
free(bases);
if (g.pre) {
int res = 0;
for (c = 0; c <= 2; ++c) {
if (sam_close(g.out[c]) < 0) {
fprintf(stderr, "[%s] error on closing '%s'\n",
__func__, g.out_name[c]);
res = 1;
}
sam_hdr_destroy(g.out_hdr[c]);
free(g.out_name[c]);
}
free(g.pre); free(g.b);
if (res) return 1;
}
free(g.arg_list);
sam_global_args_free(&ga);
return status;
}