-
Notifications
You must be signed in to change notification settings - Fork 20
/
Copy pathmain.py
134 lines (120 loc) · 4.37 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
#!/usr/bin/env python
import sys
if (sys.version_info < (3, 0)):
raise Exception("Python 3 required. Please follow the installation instruction on 'https://github.com/jgwak/McRecon'")
import numpy as np
import argparse
import pprint
import logging
import multiprocessing as mp
# Theano
import theano.sandbox.cuda
from lib.config import cfg, cfg_from_file, cfg_from_list
from lib.test_net import test_net
from lib.train_net import train_net
def parse_args():
parser = argparse.ArgumentParser(description='Main 3Deverything train/test file')
parser.add_argument(
'--gpu',
dest='gpu_id',
help='GPU device id to use [gpu0]',
default=cfg.CONST.DEVICE,
type=str)
parser.add_argument(
'--cfg',
dest='cfg_files',
action='append',
help='optional config file',
default=None,
type=str)
parser.add_argument(
'--rand', dest='randomize', help='randomize (do not use a fixed seed)', action='store_true')
parser.add_argument(
'--test', dest='test', help='randomize (do not use a fixed seed)', action='store_true')
parser.add_argument('--net', dest='net_name', help='name of the net', default=None, type=str)
parser.add_argument(
'--model', dest='model_name', help='name of the network model', default=None, type=str)
parser.add_argument(
'--batch-size',
dest='batch_size',
help='name of the net',
default=cfg.CONST.BATCH_SIZE,
type=int)
parser.add_argument(
'--diff-backprop',
dest='diff_backprop',
help='Differentiable step backprop method',
default=cfg.TRAIN.DIFF_BACKPROP,
type=str)
parser.add_argument(
'--stabilizer',
dest='stabilizer',
help='GAN stabilizer algorithm',
default=cfg.TRAIN.STABILIZER,
type=str)
parser.add_argument(
'--iter',
dest='iter',
help='number of iterations',
default=cfg.TRAIN.NUM_ITERATION,
type=int)
parser.add_argument(
'--dataset', dest='dataset', help='dataset config file', default=None, type=str)
parser.add_argument(
'--set', dest='set_cfgs', help='set config keys', default=None, nargs=argparse.REMAINDER)
parser.add_argument('--exp', dest='exp', help='name of the experiment', default=None, type=str)
parser.add_argument(
'--weights', dest='weights', help='Initialize network from the weights file', default=None)
parser.add_argument('--out', dest='out_path', help='set output path', default=cfg.DIR.OUT_PATH)
parser.add_argument(
'--init-iter',
dest='init_iter',
help='Start from the specified iteration',
default=cfg.TRAIN.INITIAL_ITERATION)
args = parser.parse_args()
return args
def main():
args = parse_args()
print('Called with args:')
print(args)
# Set main gpu
theano.sandbox.cuda.use(args.gpu_id)
if args.cfg_files is not None:
for cfg_file in args.cfg_files:
cfg_from_file(cfg_file)
if args.set_cfgs is not None:
cfg_from_list(args.set_cfgs)
if not args.randomize:
np.random.seed(cfg.CONST.RNG_SEED)
if args.batch_size is not None:
cfg_from_list(['CONST.BATCH_SIZE', args.batch_size])
if args.iter is not None:
cfg_from_list(['TRAIN.NUM_ITERATION', args.iter])
if args.net_name is not None:
cfg_from_list(['NET_NAME', args.net_name])
if args.model_name is not None:
cfg_from_list(['CONST.NETWORK_CLASS', args.model_name])
if args.dataset is not None:
cfg_from_list(['DATASET', args.dataset])
if args.exp is not None:
cfg_from_list(['TEST.EXP_NAME', args.exp])
if args.diff_backprop is not None:
cfg_from_list(['TRAIN.DIFF_BACKPROP', args.diff_backprop])
if args.stabilizer is not None:
cfg_from_list(['TRAIN.STABILIZER', args.stabilizer])
if args.out_path is not None:
cfg_from_list(['DIR.OUT_PATH', args.out_path])
if args.weights is not None:
cfg_from_list(['CONST.WEIGHTS', args.weights, 'TRAIN.RESUME_TRAIN', True,
'TRAIN.INITIAL_ITERATION', int(args.init_iter)])
print('Using config:')
pprint.pprint(cfg)
if not args.test:
train_net()
else:
test_net()
if __name__ == '__main__':
mp.log_to_stderr()
logger = mp.get_logger()
logger.setLevel(logging.INFO)
main()