-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathapp.py
186 lines (155 loc) · 6.96 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
from flask import Flask, request, jsonify, send_from_directory
from flask_cors import CORS
import os
import requests
from pydub import AudioSegment
from openai import OpenAI
from dotenv import load_dotenv
import base64
import json
import tempfile
import time
from enum import Enum
from pathlib import Path
from urllib.request import Request, urlopen
import formlabs
from formlabs.models.auto_orient_post_request import AutoOrientPostRequest
app = Flask(__name__)
CORS(app)
# load environment variables from .env file
load_dotenv()
client = OpenAI()
KITTYCAD_API_TOKEN = os.environ['KITTYCAD_API_TOKEN']
def transcribe(audio_path):
# Transcribe the audio using OpenAI Whisper
with open(audio_path, 'rb') as f:
transcription = client.audio.transcriptions.create(
model="whisper-1",
file=f
)
return transcription.text
def call_zoo_api(prompt: str, output_format: str, output_dir: Path) -> Path | str:
# https://zoo.dev/docs/api/ai/generate-a-cad-model-from-text
# copied from https://github.com/KittyCAD/text-to-cad-blender-addon/blob/main/src/text_to_cad.py
# define the url for the POST request
post_url = f"https://api.zoo.dev/ai/text-to-cad/{output_format}"
# define the authorization string
auth = f"Bearer {KITTYCAD_API_TOKEN}"
# create the json data string which contains our text prompt
data = json.dumps({"prompt": prompt}).encode("utf-8")
# define headers
# the User-Agent header is necessary to prevent an HTTP 403 error
headers = {
"Authorization": auth,
"Content-Type": "application/json",
"User-Agent": "Mozilla/5.0",
}
# create the response
req = Request(post_url, data=data, headers=headers)
with urlopen(req) as response:
# decode the response to a dict
result = json.loads(response.read().decode("utf-8"))
# get the id of the request
op_id = result["id"]
# the requests are made asynchronously so keep checking the operations via the id
# https://zoo.dev/docs/api/api-calls/get-an-async-operation
while result["status"] not in ["completed", "failed"]:
print("checking if the operation is completed")
async_url = f"https://api.zoo.dev/async/operations/{op_id}"
headers = {"Authorization": auth, "User-Agent": "Mozilla/5.0"}
async_req = Request(async_url, headers=headers)
with urlopen(async_req) as response:
result = json.loads(response.read().decode("utf-8"))
# using a sleep so that we don't keep pinging the site and get rate limited
time.sleep(10)
if result["status"] == "completed":
# get the base64 encoded string of the output
outputs = result["outputs"][f"source.{output_format}"]
# this seems strange I have to do this. See the official kittycad implementation
# https://github.com/KittyCAD/kittycad.py/blob/main/kittycad/models/base64data.py#L39
decoded = base64.urlsafe_b64decode(outputs.strip("=") + "===")
# save contents to a file on disk at the users location
fp = output_dir / f"{op_id}.{output_format}"
with open(fp, "wb") as out:
out.write(decoded)
return fp
if result["status"] == "failed":
# we've not generated an object for some reason
# return the error string
return result["error"]
def text_to_3d_model(prompt: str) -> Path | str:
output_format = "stl"
current_directory = Path.cwd()
return call_zoo_api(prompt, output_format, current_directory)
# mock by returning a locally saved .stl file
# return Path("test.stl")
def convert_3d_model_to_printable_model(stl_file_path: Path) -> Path | str:
print(f"Converting 3D model to printable model...")
try:
p = Path().resolve() / "PreFormServer.app/Contents/MacOS/PreFormServer"
with formlabs.PreFormApi.start_preform_server(pathToPreformServer=str(p)) as preform:
print(f"Creating new scene...")
preform.api.scene_post({
"machine_type": "FRMB-3-0",
"material_code": "FLGPBK04",
"slice_thickness": 0.1,
"print_setting": "LEGACY",
})
print(f"Importing model... {str(stl_file_path.resolve())}")
# zoo.dev seems to produce models that are very small (unit scale)? so scale them up a bunch
scale = 1000
new_model = preform.api.scene_import_model_post({"file": str(stl_file_path.resolve()), "scale": scale})
new_model_id = new_model.model_id
print(f"Auto orienting...")
preform.api.auto_orient_post(AutoOrientPostRequest.from_dict({"models": "ALL"}))
print(f"Auto supporting...")
preform.api.auto_support_post(AutoOrientPostRequest.from_dict({"models": "ALL"}))
# print(f"Auto layout...")
# preform.api.auto_layout_post_with_http_info(
# AutoOrientPostRequest.from_dict({"models": "ALL"})
# )
# TODO: probably replace .STL export with a thumbnail image
print(f"Exporting model as .STL")
exported_stl_path = Path("export.stl")
preform.api.export_post(str(exported_stl_path))
print(f"Exported STL file to {exported_stl_path}")
exported_form_path = Path("export.form")
preform.api.save_form_post(str(exported_form_path))
print(f"Exported .form file to {exported_form_path}")
return exported_stl_path
except Exception as e:
return str(e)
@app.route('/')
def index():
return send_from_directory('.', 'index.html')
@app.route('/record', methods=['POST'])
def route_record():
audio_file = request.files['audio']
audio_path = "recording.wav"
audio_file.save(audio_path)
transcribed_text = transcribe(audio_path)
print(f"Transcribed text: {transcribed_text}")
return jsonify({"text":transcribed_text})
@app.route('/make-model', methods=['POST'])
def route_make_model():
prompt = request.json['prompt']
stl_file_path = text_to_3d_model(prompt)
print(f"STL file path: {stl_file_path}")
if isinstance(stl_file_path, str):
return jsonify({"message": "Error", "error": stl_file_path})
return jsonify({"message": "Model is ready", "file_path": stl_file_path.name})
@app.route('/make-printable-model', methods=['POST'])
def route_make_printable_model():
stl_file_path = request.json['file_path']
# using Preform API to do OCP and save the result as an .STL and a .form
# return the path to the .stl and the .form
result = convert_3d_model_to_printable_model(Path(stl_file_path))
print(f"Printable model result: {result}")
if isinstance(result, str):
return jsonify({"message": "Error", "error": result})
return jsonify({"message": "Printable model is ready", "file_path": result.name})
@app.route('/download/<filename>')
def download_file(filename):
return send_from_directory('.', filename)
if __name__ == '__main__':
app.run(port=8001, debug=True)