-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
205 lines (150 loc) · 6.34 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
## 라이브러리 추가하기
import os
import time
import matplotlib.pyplot as plt
import numpy as np
import torch
import torch.nn as nn
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter
from torch.utils.tensorboard import SummaryWriter
from torchvision import transforms, datasets
from model import UNet
from dataset import *
from util import *
## 트레이닝에 필요한 하이퍼파라미터 설정
lr = 1e-5
# lr0 = 1e-5
batch_size = 8
num_epoch = 5
info_dir = '/checkpoint13'
data_dir = './datasets5'
ckpt_dir = './checkpoint13'
log_dir = './log13'
## 네트워크 정보 저장
if not os.path.exists(ckpt_dir):
os.makedirs(ckpt_dir)
f = open(ckpt_dir+info_dir, 'w')
f.write("learning_rate : %f \n" %lr)
f.write("batch_size : %d \n" %batch_size)
f.write("num_epoch : %d \n" %num_epoch)
f.write("Dataset number : %s \n" %data_dir)
f.write("Transformer \n")
f.write("Normalization : False\n")
f.write("Randomflip : False\n")
f.write("ToTensor : True \n")
f.close()
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
## 네트워크 학습하기
# transform = transforms.Compose([RandomFlip(), ToTensor()])
# transform = transforms.Compose([Normalization(mean=0.5, std=0.5), RandomFlip(), ToTensor()])
# transform = transforms.Compose([Normalization(mean=0.5, std=0.5), ToTensor()])
transform = transforms.Compose([ToTensor()])
dataset_train = Dataset(data_dir=os.path.join(data_dir, 'train'), transform=transform)
loader_train = DataLoader(dataset_train, batch_size=batch_size, shuffle=True, num_workers=8)
dataset_val = Dataset(data_dir=os.path.join(data_dir, 'val'), transform=transform)
loader_val = DataLoader(dataset_val, batch_size=batch_size, shuffle=True, num_workers=8)
## 네트워크 생성하기
net = UNet().to(device)
## 손실함수 정의하기
fn_loss = nn.BCEWithLogitsLoss().to(device)
# fn_loss = nn.BCELoss().to(device)
## Optimizer 설정하기
optim = torch.optim.Adam(net.parameters(), lr=lr)
# optim = torch.optim.SGD(net.parameters(), lr=lr)
## 그밖에 부수적인 variables 설정하기
num_data_train = len(dataset_train)
num_data_val = len(dataset_val)
num_batch_train = np.ceil(num_data_train / batch_size)
num_batch_val = np.ceil(num_data_val / batch_size)
## 그밖에 부수적인 functions 설정하기
fn_tonumpy = lambda x: x.to('cpu').detach().numpy().transpose(0, 2, 3, 1)
fn_denorm = lambda x, mean, std: (x * std) + mean
fn_class = lambda x: 1.0 * (x > 0.5)
## Tenasorboard를 사용하기 위한 SummaryWriter 설정
writer_train = SummaryWriter(log_dir=os.path.join(log_dir, 'train'))
writer_val = SummaryWriter(log_dir=os.path.join(log_dir, 'val'))
## 네트워크 학습시키기
st_epoch = 0
# net, optim, st_epoch = load(ckpt_dir=ckpt_dir, net=net, optim=optim)
start = time.time()
net = nn.DataParallel(net, device_ids=[0,1])
net.cuda()
total_dice_score = 0
for_loop_counter = 0
nan_counter = 0
for epoch in range(st_epoch + 1, num_epoch + 1):
net.train()
loss_arr = []
start = time.time()
# lr = lr0 * np.exp(-(epoch-1)/5)
for batch, data in enumerate(loader_train, 1):
#forward pass
label = data['label'].to(device)
input = data['input'].to(device)
output = net(input)
output2 = output.cpu()
output2 = output2.detach().numpy()
prediction = np.round(output2)
label2 = label.cpu()
ground_truth = label2.numpy()
tk_pd = np.greater(prediction, 0)
tk_gt = np.greater(ground_truth, 0)
tk_dict = 2 * np.logical_and(tk_pd, tk_gt).sum() / (tk_pd.sum() + tk_gt.sum())
if tk_pd.sum() + tk_gt.sum() > 0:
tk_dict = 2*np.logical_and(tk_pd, tk_gt).sum()/(tk_pd.sum() + tk_gt.sum())
print("Current Dice score : %.4f" %tk_dict)
total_dice_score += tk_dict
for_loop_counter += 1
writer_train.add_scalar('Dice_score', tk_dict, for_loop_counter)
else:
nan_counter += 1
print("tk_pd.sum() + tk_gt.sum() has 0 value!")
#backward pass
optim.zero_grad()
loss = fn_loss(output, label)
loss.requires_grad_(True)
loss.backward()
optim.step()
# 손실함수 계산
loss_arr += [loss.item()]
end = time.time()
print("TRAIN: EPOCH %04d / %04d | BATCH %04d / %04d | LOSS %.4f" %
(epoch, num_epoch, batch, num_batch_train, np.mean(loss_arr)))
if batch % 50 == 0:
print("TRAIN TIME for 50 Batch is : %d" %(end-start))
start = time.time()
# Tensorboard 저장하기
label = fn_tonumpy(label)
# input = fn_tonumpy(fn_denorm(input, mean=0.5, std=0.5))
input = fn_tonumpy(input)
output = fn_tonumpy(fn_class(output))
writer_train.add_image('label', label, num_batch_train * (epoch - 1) + batch, dataformats='NHWC')
writer_train.add_image('input', input, num_batch_train * (epoch - 1) + batch, dataformats='NHWC')
writer_train.add_image('output', output, num_batch_train * (epoch - 1) + batch, dataformats='NHWC')
writer_train.add_scalar('loss', np.mean(loss_arr), epoch)
with torch.no_grad():
net.eval()
loss_arr = []
for batch, data in enumerate(loader_val, 1):
# forward pass
label = data['label'].to(device)
input = data['input'].to(device)
output = net(input)
# 손실함수 계산하기
loss = fn_loss(output, label)
loss_arr += [loss.item()]
print("VALID: EPOCH %04d / %04d | BATCH %04d / %04d | LOSS %.4f" %
(epoch, num_epoch, batch, num_batch_val, np.mean(loss_arr)))
#Tensorborad 저장하기
label = fn_tonumpy(label)
# input = fn_tonumpy(fn_denorm(input, mean=0.5, std=0.5))
input = fn_tonumpy(input)
output = fn_tonumpy(fn_class(output))
writer_val.add_image('label', label, num_batch_train * (epoch - 1) + batch, dataformats='NHWC')
writer_val.add_image('input', input, num_batch_train * (epoch - 1) + batch, dataformats='NHWC')
writer_val.add_image('output', output, num_batch_train * (epoch - 1) + batch, dataformats='NHWC')
writer_val.add_scalar('loss', np.mean(loss_arr), epoch)
save(ckpt_dir=ckpt_dir, net=net, optim=optim, epoch=epoch)
writer_train.close()
writer_val.close()