-
Notifications
You must be signed in to change notification settings - Fork 20
/
test.py
169 lines (136 loc) · 6.05 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
import os
import PIL
import time
import argparse
import warnings
warnings.filterwarnings("ignore")
import pandas as pd
from PIL import Image
from collections import OrderedDict
import torch
import torch.nn as nn
import torch.nn.parallel
import torch.backends.cudnn as cudnn
import torch.optim
import torch.utils.data
import torch.utils.data.distributed
import torchvision.transforms as transforms
import torchvision.datasets as datasets
from model import *
from utils import measure_model, ProgressMeter, AverageMeter, accuracy
parser = argparse.ArgumentParser(description='PyTorch Condensed Convolutional Networks')
parser.add_argument('--data_url', metavar='DIR', default='~/data',
help='path to dataset')
parser.add_argument('--dataset', metavar='DATASET', default='imagenet', choices=['cifar10', 'cifar100', 'imagenet'],
help='dataset')
parser.add_argument('--model', default='condensenetv2.cdnv2_a', type=str, metavar='M',
help='model to train the dataset')
parser.add_argument('-j', '--workers', default=8, type=int, metavar='N',
help='number of data loading workers (default: 4)')
parser.add_argument('-b', '--batch_size', default=1024, type=int,
metavar='N', help='mini-batch size (default: 256)')
parser.add_argument('--train_url', type=str, metavar='PATH', default='test',
help='path to save result and checkpoint (default: results/savedir)')
parser.add_argument('--evaluate_from', default=None, type=str, metavar='PATH',
help='path to saved checkpoint (default: none)')
parser.add_argument('--print_freq', '-p', default=100, type=int,
metavar='N', help='print frequency (default: 10)')
def main():
args = parser.parse_args()
assert args.dataset == 'imagenet'
args.num_classes = 1000
args.IMAGE_SIZE = 224
if args.train_url and not os.path.exists(args.train_url):
os.makedirs(args.train_url)
### Create Model
model = eval(args.model)(args)
assert args.evaluate_from is not None, "Please give the checkpoint path of the model which is used to be " \
"evaluated!"
print("=> Load model from '{}'".format(args.evaluate_from))
state_dict = torch.load(args.evaluate_from)['state_dict']
print('Loading pretrained parameter from state_dict...')
new_state_dict = OrderedDict()
for k, v in state_dict.items():
if k.startswith('module'):
name = k[7:]
new_state_dict[name] = v
else:
new_state_dict[k] = v
model.load_state_dict(new_state_dict)
model = nn.DataParallel(model).cuda()
print("=> Load checkpoint done!")
### Define loss function (criterion) and optimizer
criterion = nn.CrossEntropyLoss().cuda()
cudnn.benchmark = True
### Data loading
valdir = args.data_url + 'val/'
normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225])
val_loader = torch.utils.data.DataLoader(
datasets.ImageFolder(
valdir,
transforms.Compose([
transforms.Resize(256, interpolation=PIL.Image.BILINEAR if args.model in ['cdnv2_c', 'converted_cdnv2_c'] else PIL.Image.BICUBIC),
### Documentation for transforms.Resize
# If size is a sequence like (h, w), output size will be matched to this.
# If size is an int, smaller edge of the image will be matched to this number.
# i.e, if height > width, then image will be rescaled to (size * height / width, size)
transforms.CenterCrop(224),
transforms.ToTensor(),
normalize,
])),
batch_size=args.batch_size, shuffle=False,
num_workers=args.workers, pin_memory=True)
val_acc_top1, val_acc_top5, valid_loss = [], [], []
val_acc1, val_acc5, val_loss = validate(val_loader, model, criterion, args)
val_acc_top1.append(val_acc1)
val_acc_top5.append(val_acc5)
valid_loss.append(val_loss)
df = pd.DataFrame({'val_acc_top1': val_acc_top1, 'val_acc_top5': val_acc_top5, 'valid_loss': valid_loss})
if args.train_url:
log_file = os.path.join(args.train_url + 'log.txt')
with open(log_file, "w") as f:
df.to_csv(f)
n_flops, n_params = measure_model(model, args.IMAGE_SIZE, args.IMAGE_SIZE)
print('FLOPs: %.2fM, Params: %.2fM' % (n_flops / 1e6, n_params / 1e6))
if args.train_url:
log_file = os.path.join(args.train_url + 'measure_model.txt')
with open(log_file, "w") as f:
f.write(str(n_flops / 1e6))
f.write(str(n_params / 1e6))
f.close()
return
def validate(val_loader, model, criterion, args):
batch_time = AverageMeter('Time', ':6.3f')
losses = AverageMeter('Loss', ':.4e')
top1 = AverageMeter('Acc@1', ':6.2f')
top5 = AverageMeter('Acc@5', ':6.2f')
progress = ProgressMeter(
len(val_loader),
[batch_time, losses, top1, top5],
prefix='Test: ')
### Switch to evaluate mode
model.eval()
end = time.time()
with torch.no_grad():
for i, (images, target) in enumerate(val_loader):
images = images.cuda(non_blocking=True)
target = target.cuda(non_blocking=True)
### Compute output
output = model(images)
loss = criterion(output, target)
### Measure accuracy and record loss
acc1, acc5 = accuracy(output.data, target, topk=(1, 5))
losses.update(loss.data.item(), images.size(0))
top1.update(acc1.item(), images.size(0))
top5.update(acc5.item(), images.size(0))
### Measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
if i % args.print_freq == 0:
progress.display(i)
print(' * Acc@1 {top1.avg:.3f} Acc@5 {top5.avg:.3f}'
.format(top1=top1, top5=top5))
return top1.avg, top5.avg, losses.avg
if __name__ == '__main__':
main()