-
Notifications
You must be signed in to change notification settings - Fork 193
/
Copy pathtrain.py
125 lines (108 loc) · 4.35 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
import argparse
import json
from loguru import logger
import os
import pathlib
from pytorch_lightning.trainer import Trainer
from pytorch_lightning.callbacks import ModelCheckpoint
from pytorch_lightning.loggers import WandbLogger
from pytorch_lightning.plugins import DDPPlugin
from easydict import EasyDict
from FOTS.model.model import FOTSModel
from FOTS.model.loss import *
from FOTS.data_loader.data_module import SynthTextDataModule, ICDARDataModule
def main(config, resume: bool):
model = FOTSModel(config)
if resume:
assert pathlib.Path(config.pretrain).exists()
resume_ckpt = config.pretrain
logger.info('Resume training from: {}'.format(config.pretrain))
else:
if config.pretrain:
assert pathlib.Path(config.pretrain).exists()
logger.info('Finetune with: {}'.format(config.pretrain))
model = model.load_from_checkpoint(config.pretrain,
config=config,
map_location='cpu')
resume_ckpt = None
else:
resume_ckpt = None
if config.data_loader.dataset == 'synth800k':
data_module = SynthTextDataModule(config)
else:
data_module = ICDARDataModule(config)
data_module.setup()
root_dir = str(
pathlib.Path(config.trainer.save_dir).absolute() / config.name)
every_n_train_steps = config.trainer.get('every_n_train_steps', None)
every_n_epochs = config.trainer.get('every_n_epochs', None)
save_top_k = config.trainer.get('save_top_k', None)
monitor = config.trainer.get('monitor', None)
mode = config.trainer.get('monitor_mode', 'min')
checkpoint_callback = ModelCheckpoint(
dirpath=root_dir + '/checkpoints',
monitor=monitor,
mode=mode,
save_top_k=save_top_k,
every_n_train_steps=every_n_train_steps,
every_n_val_epochs=every_n_epochs)
wandb_dir = pathlib.Path(root_dir) / 'wandb'
if not wandb_dir.exists():
wandb_dir.mkdir(parents=True, exist_ok=True)
wandb_logger = WandbLogger(name=config.name,
project='FOTS',
config=config,
save_dir=root_dir)
if not config.cuda:
gpus = 0
else:
gpus = config.gpus
# if config.model.mode == 'detection':
# find_unused_parameters = True
# else:
# find_unused_parameters = False
find_unused_parameters = True
trainer = Trainer(
logger=wandb_logger,
callbacks=[checkpoint_callback],
max_epochs=config.trainer.epochs,
default_root_dir=root_dir,
gpus=gpus,
accelerator='ddp',
benchmark=True,
sync_batchnorm=True,
precision=config.precision,
log_gpu_memory=config.trainer.log_gpu_memory,
log_every_n_steps=config.trainer.log_every_n_steps,
overfit_batches=config.trainer.overfit_batches,
weights_summary='full',
terminate_on_nan=config.trainer.terminate_on_nan,
fast_dev_run=config.trainer.fast_dev_run,
check_val_every_n_epoch=config.trainer.check_val_every_n_epoch,
resume_from_checkpoint=resume_ckpt,
plugins=DDPPlugin(find_unused_parameters=find_unused_parameters))
trainer.fit(model=model, datamodule=data_module)
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='PyTorch Template')
parser.add_argument('-c',
'--config',
default=None,
type=str,
help='config file path (default: None)')
parser.add_argument('-r',
'--resume',
action='store_true',
help='path to latest checkpoint (default: None)')
args = parser.parse_args()
config = None
if args.config is not None:
config = json.load(open(args.config))
path = os.path.join(config['trainer']['save_dir'], config['name'])
# assert not os.path.exists(path), "Path {} already exists!".format(path)
else:
if args.resume is not None:
logger.warning('Warning: --config overridden by --resume')
config = torch.load(args.resume, map_location='cpu')['config']
assert config is not None
config = EasyDict(config)
main(config, args.resume)