-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathdata.py
421 lines (363 loc) · 13.4 KB
/
data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
import os
import pickle as pkl
import math
import networkx as nx
import numpy as np
import scipy.sparse as sp
import copy
import dgl
import torch
import torch.distributed as dist
from math import ceil
from random import Random
from torch.utils.data import Dataset
from scipy.sparse import csr_matrix
from collections import defaultdict
def bfs_seq(G, start_id):
'''
get a bfs node sequence
'''
dictionary = dict(nx.bfs_successors(G, start_id))
start = [start_id]
output = [start_id]
while len(start) > 0:
next = []
while len(start) > 0:
current = start.pop(0)
neighbor = dictionary.get(current)
if neighbor is not None:
next = next + neighbor
output = output + next
start = next
return output
def EuclideanDistances(A):
B = A
BT = B.transpose()
# vecProd = A * BT
vecProd = np.dot(A,BT)
SqA = A**2
sumSqA = np.matrix(np.sum(SqA, axis=1))
sumSqAEx = np.tile(sumSqA.transpose(), (1, vecProd.shape[1]))
SqB = B**2
sumSqB = np.sum(SqB, axis=1)
sumSqBEx = np.tile(sumSqB, (vecProd.shape[0], 1))
SqED = sumSqBEx + sumSqAEx - 2*vecProd
SqED[SqED<0]=0.0
ED = np.sqrt(SqED)
return ED
def transform_ref_pos(ref_pos):
if ref_pos is None:
return None
distance = EuclideanDistances(ref_pos)
mean = np.mean(distance, axis=1)
variance = np.var(distance, axis=1)
new_ref_pos = np.concatenate((mean,variance), axis=1)
return new_ref_pos
def get_distance(ref_pos):
if ref_pos is None:
return None
distance = EuclideanDistances(ref_pos)
return distance
def get_bounding_box(nodelist):
nodenum = len(nodelist)
pos = np.zeros((nodenum,2))
for node in nodelist:
id = node[0]
cx = float(node[2])
cy = float(node[3])
pos[id][0] = cx
pos[id][1] = cy
pos2 = pos
left = pos2[0][0]
right = pos2[0][0]
top = pos2[0][1]
bottom = pos2[0][1]
for i in range(nodenum):
if left > pos2[i][0]:
left = pos2[i][0]
if right < pos2[i][0]:
right = pos2[i][0]
if top > pos2[i][1]:
top = pos2[i][1]
if bottom < pos2[i][1]:
bottom = pos2[i][1]
bounding_box = {"left":left,"right":right,"top":top,"bottom":bottom}
return pos2,bounding_box
def transform_nodelist(pos2,bounding_box,scale):
nodenum, _ = np.shape(pos2)
left = bounding_box["left"]
top = bounding_box["top"]
new_w = scale
new_h = scale
for i in range(nodenum):
if new_w == 0:
pos2[i][0] = 0
else:
pos2[i][0] = float((pos2[i][0] - left)) / float(new_w)
if new_h == 0:
pos2[i][1] = 0
else:
pos2[i][1] = float((pos2[i][1] - top)) / float(new_h)
return pos2
def inv_transform_nodelist(pos,bounding_box,scale):
m, n = np.shape(pos)
pos_left = pos[0][0]
pos_right = pos[0][0]
pos_bottom = pos[0][1]
pos_top = pos[0][1]
for i in range(m):
if pos_left>pos[i][0]:
pos_left = pos[i][0]
if pos_top>pos[i][1]:
pos_top = pos[i][1]
if pos_right<pos[i][0]:
pos_right = pos[i][0]
if pos_bottom<pos[i][1]:
pos_bottom = pos[i][1]
for i in range(m):
pos[i][0] = (pos[i][0] - pos_left)
pos[i][1] = (pos[i][1] - pos_top)
left = bounding_box["left"]
top = bounding_box["top"]
new_w = scale
new_h = scale
for i in range(m):
pos[i][0] = (pos[i][0])*new_w + left
pos[i][1] = (pos[i][1])*new_h + top
return pos
def calc_max_num_node(graphlist,dataset_file):
max_num_node = 0
for idx in range(len(graphlist)):
pathname = graphlist[idx]
object1 = {}
with open(dataset_file + pathname,"rb") as f:
object1 = pkl.load(f)
nodelist = object1["nodelist"]
max_num_node = max([max_num_node,len(nodelist)])
return max_num_node
def calc_max_num_edge(graphlist,dataset_file):
max_num_edge = 0
for idx in range(len(graphlist)):
pathname = graphlist[idx]
object1 = {}
with open(dataset_file + pathname,"rb") as f:
object1 = pkl.load(f)
linelist = object1["linelist"]
max_num_edge = max([max_num_edge,len(linelist)])
return max_num_edge
def calc_max_prev_node(graphlist,dataset_file, iter=20000,topk=10):
max_prev_node = []
for i in range(iter):
if i % (iter / 5) == 0:
print('iter {} times'.format(i))
idx = np.random.randint(len(graphlist))
pathname = graphlist[idx]
object1 = {}
with open(dataset_file + pathname,"rb") as f:
object1 = pkl.load(f)
linelist = object1["linelist"]
graph = defaultdict(list)
for line in linelist:
graph[line[0]].append(line[1])
graph[line[1]].append(line[0])
adj = nx.adjacency_matrix(nx.from_dict_of_lists(graph)).toarray()
adj_copy = adj.copy()
x_idx = np.random.permutation(adj_copy.shape[0])
adj_copy = adj_copy[np.ix_(x_idx, x_idx)]
adj_copy_matrix = np.asmatrix(adj_copy)
G = nx.from_numpy_matrix(adj_copy_matrix)
# then do bfs in the permuted G
start_idx = np.random.randint(adj_copy.shape[0])
x_idx = np.array(bfs_seq(G, start_idx))
adj_copy = adj_copy[np.ix_(x_idx, x_idx)]
# encode adj
adj_encoded = encode_adj_flexible(adj_copy.copy())
max_encoded_len = max([len(adj_encoded[i]) for i in range(len(adj_encoded))])
max_prev_node.append(max_encoded_len)
max_prev_node = sorted(max_prev_node)[-1*topk:]
return max_prev_node
def calc_scale(graphlist,dataset_file):
maxwidth = 0
maxheight = 0
for idx in range(len(graphlist)):
pathname = graphlist[idx]
object1 = {}
with open(dataset_file + pathname,"rb") as f:
object1 = pkl.load(f)
nodelist = object1["nodelist"]
width = object1["width"]
height = object1["height"]
_,bounding_box = get_bounding_box(nodelist)
newwidth = bounding_box["right"]-bounding_box["left"]
newheight = bounding_box["bottom"]-bounding_box["top"]
maxwidth = max([maxwidth,newwidth])
maxheight = max([maxheight,newheight])
return max([maxwidth,maxheight])
########## Graph_sequence_from_file
class Graph_sequence_from_file_dgl(Dataset):
def __init__(self, dataset_file):
self.dataset_file = dataset_file
self.graphlist = os.listdir(self.dataset_file)
def __len__(self):
return len(self.graphlist)
def __getitem__(self, idx):
pathname = self.graphlist[idx]
object1 = {}
with open(self.dataset_file + pathname,"rb") as f:
object1 = pkl.load(f)
nodenum = object1["len"]
graph = object1["graph"]
g1 = dgl.DGLGraph()
g2 = dgl.DGLGraph()
# add nodes into the graph; nodes are labeled from 0 to (nodenum - 1)
g1.add_nodes(nodenum)
g2.add_nodes(nodenum)
# real edges
for i in range(nodenum):
for j in range(len(graph[i])):
tgt = graph[i][j]
src = i
if src<tgt:
g1.add_edges(src,tgt)
if src>tgt:
g2.add_edges(src,tgt)
real_edge_num = g1.number_of_edges()
# fake edges due to BFS order
for i in range(nodenum-1):
g1.add_edges(i,i+1)
g2.add_edges(nodenum-1-i,nodenum-2-i)
all_edge_num = g1.number_of_edges()
# initialize all the node and edge features
g1.set_n_initializer(dgl.init.zero_initializer)
g2.set_n_initializer(dgl.init.zero_initializer)
g1.set_e_initializer(dgl.init.zero_initializer)
g2.set_e_initializer(dgl.init.zero_initializer)
# add label to edges
g1.edata['edge_label'] = torch.ones(all_edge_num, 1)
g1.edata['edge_label'][0:real_edge_num] = 0
g2.edata['edge_label'] = torch.ones(all_edge_num, 1)
g2.edata['edge_label'][0:real_edge_num] = 0
object1["g1"] = g1
object1["g2"] = g2
return object1
class Graph_sequence_from_file_pyg(Dataset):
def __init__(self, dataset_file):
self.dataset_file = dataset_file
self.graphlist = os.listdir(self.dataset_file)
def __len__(self):
return len(self.graphlist)
def __getitem__(self, idx):
pathname = self.graphlist[idx]
object1 = {}
with open(self.dataset_file + pathname,"rb") as f:
object1 = pkl.load(f)
nodenum = object1["len"]
graph = object1["graph"]
g1_edge_index = []
g2_edge_index = []
# add nodes into the graph; nodes are labeled from 0 to (nodenum - 1)
g1 = dgl.DGLGraph()
g2 = dgl.DGLGraph()
# add nodes into the graph; nodes are labeled from 0 to (nodenum - 1)
g1.add_nodes(nodenum)
g2.add_nodes(nodenum)
# real edges
for i in range(nodenum):
for j in range(len(graph[i])):
tgt = graph[i][j]
src = i
if src<tgt:
g1_edge_index.append([tgt,src])
g1.add_edges(src,tgt)
if src>tgt:
g2_edge_index.append([tgt,src])
g2.add_edges(src,tgt)
real_edge_num = len(g1_edge_index)
# fake edges due to BFS order
for i in range(nodenum-1):
g1_edge_index.append([i+1,i])
g1.add_edges(i,i+1)
g2_edge_index.append([nodenum-2-i,nodenum-1-i])
g2.add_edges(nodenum-1-i,nodenum-2-i)
all_edge_num = len(g1_edge_index)
g1_edge_index = np.asarray(g1_edge_index).T
g2_edge_index = np.asarray(g2_edge_index).T
# add label to edges
g1_edge_label = np.ones((all_edge_num, 1))
g1_edge_label[0:real_edge_num] = 0
g2_edge_label = np.ones((all_edge_num, 1))
g2_edge_label[0:real_edge_num] = 0
object1["g1_edge_index"] = g1_edge_index
object1["g2_edge_index"] = g2_edge_index
object1["g1_edge_label"] = g1_edge_label
object1["g2_edge_label"] = g2_edge_label
object1["g1"]=g1
object1["g2"]=g2
return object1
########## Graph_sequence_from_file
class Graph_sequence_from_file(Dataset):
def __init__(self, dataset_file):
self.dataset_file = dataset_file
self.graphlist = os.listdir(self.dataset_file)
def __len__(self):
return len(self.graphlist)
def __getitem__(self, idx):
pathname = self.graphlist[idx]
object1 = {}
with open(self.dataset_file + pathname,"rb") as f:
object1 = pkl.load(f)
return object1
############# Fetching Datasets for Distributed Training######################################
# get the datasets
def get_graph_datasets(opt):
train_graph_dataset = None
valid_graph_dataset = None
test_graph_dataset = None
if opt.DGL_input == False:
train_graph_dataset = Graph_sequence_from_file(dataset_file=opt.target_train_dataset_file_folder)
valid_graph_dataset = Graph_sequence_from_file(dataset_file=opt.target_valid_dataset_file_folder)
test_graph_dataset = Graph_sequence_from_file(dataset_file=opt.target_test_dataset_file_folder)
else:
train_graph_dataset = Graph_sequence_from_file_dgl(dataset_file=opt.target_train_dataset_file_folder)
valid_graph_dataset = Graph_sequence_from_file_dgl(dataset_file=opt.target_valid_dataset_file_folder)
test_graph_dataset = Graph_sequence_from_file_dgl(dataset_file=opt.target_test_dataset_file_folder)
return train_graph_dataset,valid_graph_dataset,test_graph_dataset
# partition the datasets
class Partition(object):
""" Dataset-like object, but only access a subset of it. """
def __init__(self, data, index):
self.data = data
self.index = index
def __len__(self):
return len(self.index)
def __getitem__(self, index):
data_idx = self.index[index]
return self.data[data_idx]
class DataPartitioner(object):
""" Partitions a dataset into different chuncks. """
def __init__(self, data, sizes=[0.7, 0.2, 0.1], seed=1234):
self.data = data
self.partitions = []
rng = Random()
rng.seed(seed)
data_len = len(data)
indexes = [x for x in range(0, data_len)]
rng.shuffle(indexes)
for frac in sizes:
part_len = int(frac * data_len)
self.partitions.append(indexes[0:part_len])
indexes = indexes[part_len:]
def use(self, partition):
return Partition(self.data, self.partitions[partition])
def partition_dataset(opt):
training_graph_dataset,_,_ = get_graph_datasets(opt)
size = dist.get_world_size()
overall_bsz = opt.batch_size
bsz = overall_bsz / float(size)
bsz = int(bsz)
partition_sizes = [1.0 / size for _ in range(size)]
partition = DataPartitioner(training_graph_dataset, partition_sizes) # Divide the data into size parts equally
partition = partition.use(dist.get_rank())
train_set = torch.utils.data.DataLoader(partition, collate_fn=opt.collate_fn,batch_size=bsz, num_workers=opt.dist_train_num_workers, shuffle=True)
return train_set, bsz
############# Fetching Datasets for Distributed Training######################################