-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
217 lines (177 loc) · 8.38 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
import os
import warnings
warnings.filterwarnings("ignore")
import argparse
import numpy as np
import random
from collections import defaultdict
from copy import deepcopy
import torch
from torch.utils.data import DataLoader
from dataset.utils import train_cooccurrence
from build_model import build_model
from evaluation import display_results
DATA_DIR = 'data/'
MODEL_DIR = 'model/'
def run(args, fold, seed):
save_dir = os.path.join(MODEL_DIR, f"{args.task}/seed{seed}/")
cooccurrence_dir = os.path.join(MODEL_DIR, f"{args.task}/seed{seed}")
if args.dataset == 'extrasensory':
data_path = os.path.join(DATA_DIR, 'ExtraSensory')
cooccurrence_path = os.path.join(DATA_DIR, 'cooccurrence/cooccurrence_extrasensory.pkl')
trainData, valData, testData = load_data(data_path, args.n_client, seed=seed, fold=fold)
target_names = testData.target_names
data_feature_size = np.shape(testData.data[0])[-1]
save_dir = os.path.join(save_dir, f"fold{fold}")
elif args.dataset == 'mimic3':
data_path = os.path.join(DATA_DIR, 'MIMIC/medical-codes')
cooccurrence_path = os.path.join(DATA_DIR, 'cooccurrence/cooccurrence_mimic3.pkl')
trainData, valData, testData = load_data(data_path, args.n_client, seed=seed)
target_names = testData.target_names
data_feature_size = len(testData.vocab)
elif args.dataset == 'pamap2':
data_path = os.path.join(DATA_DIR, 'PAMAP2/pamap2_data_100.pkl')
label_path = os.path.join(DATA_DIR, 'PAMAP2/pamap2_label_100.pkl')
cooccurrence_path = os.path.join(DATA_DIR, 'cooccurrence/cooccurrence_pamap2.pkl')
trainData, valData, testData = load_data(data_path, label_path, k_class=args.k_class, seed=seed)
target_names = testData.target_names
data_feature_size = np.shape(testData.data[0])[-1]
elif args.dataset == 'r8':
data_path = os.path.join(DATA_DIR, 'Reuters-21578')
cooccurrence_path = os.path.join(DATA_DIR, 'cooccurrence/cooccurrence_reuters.pkl')
trainData, valData, testData = load_data(data_path, args.n_client, k_class=args.k_class, seed=seed)
target_names = testData.target_names
data_feature_size = len(testData.vocab)
else:
raise ValueError('Wrong dataset.')
if args.no_pretrain:
pretrained_embedding = None
else:
pretrained_embedding = train_cooccurrence(cooccurrence_dir, cooccurrence_path, target_names, calibrate=False)
pretrained_embedding = torch.FloatTensor(pretrained_embedding).to(args.device)
print('pretrained embedding matrix:', pretrained_embedding.shape)
print(pretrained_embedding)
print('# of samples in trainData:', [len(td) for td in trainData])
if not os.path.exists(save_dir):
os.makedirs(save_dir)
print('save_dir:', save_dir)
encoded_labels = torch.arange(0, end=len(testData.target_names)).to(args.device)
print(f'n_class: {len(target_names)}, n_vocab: {encoded_labels.max() + 1}, n_feature: {data_feature_size}')
global_model = build_model(
use_label_encoder=args.fedalign,
hidden_dim=256,
data_feature_size=data_feature_size,
n_class=len(target_names),
nhead=4,
num_encoder_layers=1,
dim_feedforward=64,
dropout=0.5,
pretrained_embedding=pretrained_embedding,
do_input_embedding=args.do_input_embedding
)
client_models = [deepcopy(global_model) for _ in range(args.n_client)]
global_model = global_model.to(args.device)
client_models = [model.to(args.device) for model in client_models]
framework = Framework(args, global_model, client_models, encoded_labels, target_names, metrics=metrics)
train_log = {'args': args, 'test_result': []}
framework.train(args, trainData, valData, testData, collate_fn, train_log, save_dir)
best_model = torch.load(os.path.join(save_dir, f'model.pt'))
test_loader = DataLoader(testData, batch_size=args.batch_size, shuffle=False, collate_fn=collate_fn, num_workers=1)
test_true, test_pred, test_mask = framework.evaluate(best_model, test_loader)
results = calculate_metrics(test_true, test_pred, test_mask)
del trainData
del valData
del testData
del global_model
del client_models
del best_model
del framework
return results
def parse_args():
# default setting is for extrasensory
parser = argparse.ArgumentParser()
parser.add_argument('-g', '--gpu', type=int, default="5", help="gpu id")
parser.add_argument('--random_seeds', type=int, default=[4321, 4322, 4323, 4324, 4325], help="random seed")
# task
parser.add_argument('-t', '--task', choices=['es-5', 'es-15', 'es-25', 'mimic3', 'pamap2', 'r8'], default='mimic3', help="task name")
parser.add_argument('-c', '--n_client', type=int, default=10, help="number of clients")
parser.add_argument('--k_class', type=int, default=10, help="number of random class per client")
# FL setting
parser.add_argument('--sample_clients', type=int, default=5, help="number of clients join training at each round")
parser.add_argument('-e', '--epochs', type=int, default=5, help="number of training epochs per round")
parser.add_argument('-r', '--rounds', type=int, default=50, help="number of iteration rounds")
parser.add_argument('--no_pretrain', action='store_true')
parser.add_argument('--fedalign', action='store_true')
parser.add_argument('--data_lr', type=float, default=0.001, help="learning rate")
parser.add_argument('--label_lr', type=float, default=0.001, help="learning rate")
# pseudo labeling
parser.add_argument('--pos', type=float, default=99.9, help="percentile of similarity of positive pseudo samples")
parser.add_argument('--neg', type=float, default=99.9, help="percentile of similarity of negative pseudo samples")
parser.add_argument('--batch_size', type=int, default=128, help="batch size")
return parser.parse_args()
def set_seed(seed):
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
if __name__ == '__main__':
args = parse_args()
torch.cuda.set_device(args.gpu)
args.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
metrics = ['F1', 'ACC']
if args.task.startswith('es-'):
args.dataset = 'extrasensory'
args.do_input_embedding = False
args.normalize = False
if args.task == 'es-5':
args.n_client = 5
elif args.task == 'es-15':
args.n_client = 15
elif args.task == 'es-25':
args.n_client = 25
from framework import MLCFramework as Framework
from evaluation import calculate_MLC_metrics as calculate_metrics
from dataset.dataset_extrasensory import load_data, collate_fn
elif args.task == 'mimic3':
args.dataset = 'mimic3'
args.n_client = 10
args.rounds = 100
args.do_input_embedding = True
args.normalize = False
args.label_lr = 0.005
from framework import MLCFramework as Framework
from evaluation import calculate_MLC_metrics as calculate_metrics
from dataset.dataset_mimic3 import load_data, collate_fn
elif args.task == 'pamap2':
args.dataset = 'pamap2'
args.k_class = 5
args.do_input_embedding = False
args.normalize = True
args.n_client = 9
args.label_lr = 0.005
args.pos = 99
args.neg = 50
from framework import SLCFramework as Framework
from evaluation import calculate_SLC_metrics as calculate_metrics
from dataset.dataset_pamap2 import load_data, collate_fn
elif args.task == 'r8':
args.dataset = 'r8'
args.k_class = 3
args.do_input_embedding = True
args.n_client = 8
args.normalize = True
args.pos = 99
args.neg = 50
from framework import SLCFramework as Framework
from evaluation import calculate_SLC_metrics as calculate_metrics
from dataset.dataset_r8 import load_data, collate_fn
else:
raise NotImplementedError('Wong dataset')
results = defaultdict(list)
for fold, seed in zip(range(5), args.random_seeds):
set_seed(seed)
print(args)
print(f'#### Run Experiments on seed {seed} ####')
seed_results = run(args, fold, seed)
for m in metrics:
results[m].append(seed_results[m])
display_results({m: np.average(results[m]) for m in metrics}, metrics)