-
Notifications
You must be signed in to change notification settings - Fork 10
/
softmax.cc
95 lines (87 loc) · 3.19 KB
/
softmax.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
/* Copyright 2019 Stanford
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "gnn.h"
LegionRuntime::Logger::Category log_softmax("softmax");
void Model::softmax_cross_entropy(const Tensor& _logit,
const Tensor& _label,
const Tensor& _mask)
{
SoftmaxCrossEntropy* op = new SoftmaxCrossEntropy(
*this, _logit, _label, _mask);
layers.push_back(op);
}
SoftmaxCrossEntropy::SoftmaxCrossEntropy(const Model& model,
const Tensor& _logit,
const Tensor& _label,
const Tensor& _mask)
: GnnOp(_logit, _label, _mask), epoch_num(0)
{
assert(_logit.numDim == 2);
assert(_label.numDim == 2);
assert(_label.dims[0] == _logit.dims[0]);
assert(_label.dims[1] == _logit.dims[1]);
numOutputs = 0;
}
void SoftmaxCrossEntropy::init(const Model& model)
{}
void SoftmaxCrossEntropy::forward(const Model& model)
{
mode = model.mode;
if (model.mode == MD_MODE_TRAIN) {
// Do nothing in training forward
} else {
// FIXME:
// Currently launch backward for inference
backward(model);
}
}
void SoftmaxCrossEntropy::backward(const Model& model)
{
mode = model.mode;
Context ctx = model.ctx;
Runtime* runtime = model.runtime;
if (mode == MD_MODE_TRAIN)
epoch_num ++;
IndexLauncher launcher(SOFTMAX_BWD_TASK_ID, model.taskIS,
TaskArgument(this, sizeof(SoftmaxCrossEntropy)),
model.taskArgs);
// regions[0]: _logit
launcher.add_region_requirement(
RegionRequirement(inputs[0].part, 0/*projection*/,
READ_ONLY, EXCLUSIVE, inputs[0].region,
MAP_TO_ZC_MEMORY));
launcher.add_field(0, FID_DATA);
// regions[1]: _label
launcher.add_region_requirement(
RegionRequirement(inputs[1].part, 0/*projection*/,
READ_ONLY, EXCLUSIVE, inputs[1].region,
MAP_TO_ZC_MEMORY));
launcher.add_field(1, FID_DATA);
// regions[2]: _logit_grad
launcher.add_region_requirement(
RegionRequirement(inputs[0].part_grad, 0/*projection*/,
WRITE_ONLY, EXCLUSIVE, inputs[0].region_grad,
MAP_TO_ZC_MEMORY));
launcher.add_field(2, FID_DATA);
// (Optional) regions[3]: _mask
if (inputs[2].region != LogicalRegion::NO_REGION) {
launcher.add_region_requirement(
RegionRequirement(inputs[2].part, 0/*projection*/,
READ_ONLY, EXCLUSIVE, inputs[2].region,
MAP_TO_ZC_MEMORY));
launcher.add_field(3, FID_DATA);
}
runtime->execute_index_space(ctx, launcher);
}