forked from williamfiset/Algorithms
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathCoinChange.java
113 lines (87 loc) · 3.53 KB
/
CoinChange.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
/**
* The coin change problem is an unbounded knapsack problem variant. The problem asks you to find
* the minimum number of coins required for a certain amount of change given the coin denominations.
* You may use each coin denomination as many times as you please.
*
* <p>Tested against: https://leetcode.com/problems/coin-change/
*
* @author William Fiset, william.alexandre.fiset@gmail.com
*/
package com.williamfiset.algorithms.dp;
public class CoinChange {
private static final int INF = 987654321;
public static int coinChange(int[] coins, int amount) {
if (coins == null) throw new IllegalArgumentException("Coins array is null");
if (coins.length == 0) throw new IllegalArgumentException("No coin values :/");
final int N = coins.length;
// Initialize table and set first row to be infinity
int[][] dp = new int[N + 1][amount + 1];
java.util.Arrays.fill(dp[0], INF);
dp[1][0] = 0;
// Iterate through all the coins
for (int i = 1; i <= N; i++) {
int coinValue = coins[i - 1];
for (int j = 1; j <= amount; j++) {
// Consider not selecting this coin
dp[i][j] = dp[i - 1][j];
// Try selecting this coin if it's better
if (j - coinValue >= 0 && dp[i][j - coinValue] + 1 < dp[i][j]) {
dp[i][j] = dp[i][j - coinValue] + 1;
}
}
}
// The amount we wanted to make cannot be made :/
if (dp[N][amount] == INF) return -1;
// Return the minimum number of coins needed
return dp[N][amount];
}
public static int coinChangeSpaceEfficient(int[] coins, int amount) {
if (coins == null) throw new IllegalArgumentException("Coins array is null");
// Initialize table and set everything to infinity except first cell
int[] dp = new int[amount + 1];
java.util.Arrays.fill(dp, INF);
dp[0] = 0;
for (int i = 1; i <= amount; i++) {
for (int coinValue : coins) {
if (i - coinValue >= 0 && dp[i - coinValue] + 1 < dp[i]) {
dp[i] = dp[i - coinValue] + 1;
}
}
}
// The amount we wanted to make cannot be made :/
if (dp[amount] == INF) return -1;
// Return the minimum number of coins needed
return dp[amount];
}
// The recursive approach has the advantage that it does not have to visit
// all possible states like the tabular approach does. This can speedup
// things especially if the coin denominations are large.
public static int coinChangeRecursive(int[] coins, int amount) {
if (coins == null) throw new IllegalArgumentException("Coins array is null");
if (amount < 0) return -1;
int[] dp = new int[amount + 1];
return coinChangeRecursive(amount, coins, dp);
}
// Private helper method to actually go the recursion
private static int coinChangeRecursive(int amount, int[] coins, int[] dp) {
// Base cases.
if (amount < 0) return -1;
if (amount == 0) return 0;
if (dp[amount] != 0) return dp[amount];
int minCoins = INF;
for (int coinValue : coins) {
int newAmount = amount - coinValue;
int value = coinChangeRecursive(newAmount, coins, dp);
if (value != -1 && value < minCoins) minCoins = value + 1;
}
// If we weren't able to find some coins to make our
// amount then cache -1 as the answer.
return dp[amount] = (minCoins == INF) ? -1 : minCoins;
}
public static void main(String[] args) {
int[] coins = {2, 6, 1};
System.out.println(coinChange(coins, 17));
System.out.println(coinChangeSpaceEfficient(coins, 17));
System.out.println(coinChangeRecursive(coins, 17));
}
}