-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgenetic_algo.py
269 lines (162 loc) · 5.65 KB
/
genetic_algo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
import cv2
import numpy as np
import functools
import operator
from PIL import Image
import glob
from video_api import saving_address as address
'''
Creating 1D vector. These are CHROMOSOMS.
'''
def create_chromosom(resize_img):
chromosoms = []
for i in range(len(resize_img)):
for j in range(len(resize_img[i])):
for k in range(len(resize_img[i][j])) :
chromosoms.append(resize_img[i][j][k])
#creating the 1D vector
chromosoms_vector = np.array(chromosoms)
#print(chromosoms_vector)
#print(chromosoms_vector.shape)
return chromosoms_vector
'''
Recovering the image from chromosoms.
'''
def convert_chromotoframe(chromo_vector, image_shape):
image = np.reshape(a = chromo_vector, newshape = image_shape)
return image
'''
Defining the initial population.
'''
def initial_Population(img_shape, n_individuals=10):
init_population = np.empty(shape=(n_individuals,functools.reduce(operator.mul, img_shape)),dtype=np.uint8)
for indv_num in range(n_individuals):
# Randomly generating initial population chromosomes genes values.
init_population[indv_num, :] = np.random.random(functools.reduce(operator.mul, img_shape))*256
return init_population
'''
Defining the fitness function.
'''
def fitness_function(target, source):
gene_quality = np.mean(np.abs(target - source))
gene_quality = np.sum(target) - gene_quality
return gene_quality
'''
calculating fitness of each individual from the population.
'''
def population_fitness(target_chromosom, initial_population):
gene = np.zeros(initial_population.shape[0])
for i in range(initial_population.shape[0]):
gene[i] = fitness_function(target_chromosom, initial_population[i, :])
return gene
'''
Selecting the best fit parents.
'''
def parent_selection(population, fitness_scores, number_of_parents):
parents = np.empty((number_of_parents, population.shape[1]), dtype=np.uint8)
for parent in range(number_of_parents):
parent_index = np.where(fitness_scores == np.max(fitness_scores))
best_parent_index = parent_index[0][0]
parents[parent, :] = population[best_parent_index, :]
fitness_scores[best_parent_index] = -1
return parents
'''
Producing offspring(crossover).
offspring will take 1st half of the gene from parent1,
2nd half from next parent.
'''
def offSpring(parents, offspring_size):
offspring = np.empty(offspring_size)
crossover_point = np.uint8(offspring_size[1] / 2)
for parent_num in range(2):
p1_index = parent_num % parents.shape[0]
p2_index = (parent_num + 1) % parents.shape[0]
offspring[parent_num, 0:crossover_point] = parents[p1_index, 0:crossover_point]
offspring[parent_num, crossover_point] = parents[p2_index, crossover_point]
return offspring
'''
Mutation to handle bad offspring.
'''
def mutation(offspring_crossover, num_mutations=1):
mutations_counter = np.uint8(offspring_crossover.shape[1] / num_mutations)
for idx in range(offspring_crossover.shape[0]):
gene_idx = mutations_counter - 1
for mutation_num in range(num_mutations):
# The random value to be added to the gene.
random_value = np.random.uniform(-1.0, 1.0, 1)
offspring_crossover[idx, gene_idx] = offspring_crossover[idx, gene_idx] + random_value
gene_idx = gene_idx + mutations_counter
return offspring_crossover
def model():
play_ = cv2.VideoCapture(address)
i = 0
while play_.isOpened():
ret, frame = play_.read()
if ret == False:
break
cv2.imwrite(r'E:\prog\canada\frames\horse'+ str(i)+ '.jpg', frame)
img = cv2.imread(r'E:\prog\canada\frames\horse'+ str(i)+ '.jpg')
print(img)
resize_img = cv2.resize(img, (120,120))
print(resize_img)
source_dimentions = resize_img.shape
print("source image size:", source_dimentions)
'''
Resizing the target image.
'''
target_img = cv2.imread(r'E:\prog\canada\zebra.jpg')
target_resizeimg = cv2.resize(target_img, (120,120))
target_dimentions = target_resizeimg.shape
print("target image size:",target_dimentions)
'''
Source and target chromosoms.
'''
source_chromosom = create_chromosom(resize_img)
print(source_chromosom)
target_chromosom = create_chromosom(target_resizeimg)
print(target_chromosom)
'''
getting back the image from chromosoms.
'''
image = convert_chromotoframe(source_chromosom, source_dimentions)
print(image)
'''
Creating initial population.
'''
population = initial_Population(source_dimentions)
print(population)
'''
getting the fitness of parent.
'''
print("Fitness value of genes: ",'\n', fitness_function(target_chromosom, source_chromosom))
'''
calculate population fitness.
'''
fitness_scores = population_fitness(target_chromosom, population)
print("Population individual fitness score:", '\n', fitness_scores)
'''
selecting parent.
'''
parents = parent_selection(population, fitness_scores, 2)
print("Parents are:", '\n', parents)
'''
new offspring.
'''
off_spring = offSpring(parents, parents.shape)
print("offspring:", '\n', off_spring)
'''
Mutation result.
'''
muted_offspring = mutation(off_spring)
'''
saving the genetic algo generated frames.
'''
genetic_frames = 'E:\prog\canada\genetic_algo_frames\gn'+ str(i) + '.jpg'
new_img = Image.fromarray(muted_offspring, 'RGB')
new_img.save(genetic_frames)
#new_img.show()
i = i + 1
play_.release()
cv2.destroyAllWindows()
if __name__ == '__main__':
model()