-
Notifications
You must be signed in to change notification settings - Fork 14
/
star_tokenizer.py
2997 lines (2528 loc) · 133 KB
/
star_tokenizer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
# coding=utf-8
# Copyright 2018 The Open AI Team Authors and The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
This file is copied from Huggingface Transformers 2.8.0 because we find
RobertaTokenizer behaves differently when the library updates to version
3 and 4. To replicate JPQ (CIKM'21) as well as STAR/ADORE (SIGIR'21), it
is necessary to use the RobertaTokenizer in this file or the one defined
in Transformers 2.x version.
"""
import logging
import json
import os
import regex as re
from functools import lru_cache
from typing import List, Optional
import copy
import itertools
import json
import logging
import os
from collections import defaultdict
from contextlib import contextmanager
from typing import List, Optional, Tuple, Union
from tokenizers.implementations import BaseTokenizer
"""
Utilities for working with the local dataset cache.
This file is adapted from the AllenNLP library at https://github.com/allenai/allennlp
Copyright by the AllenNLP authors.
"""
import fnmatch
import json
import logging
import os
import shutil
import sys
import tarfile
import tempfile
from contextlib import contextmanager
from functools import partial, wraps
from hashlib import sha256
from typing import Optional
from urllib.parse import urlparse
from zipfile import ZipFile, is_zipfile
import boto3
import requests
from botocore.config import Config
from botocore.exceptions import ClientError
from filelock import FileLock
from tqdm.auto import tqdm
__version__ = "2.8.0"
logger = logging.getLogger(__name__) # pylint: disable=invalid-name
try:
USE_TF = os.environ.get("USE_TF", "AUTO").upper()
USE_TORCH = os.environ.get("USE_TORCH", "AUTO").upper()
if USE_TORCH in ("1", "ON", "YES", "AUTO") and USE_TF not in ("1", "ON", "YES"):
import torch
_torch_available = True # pylint: disable=invalid-name
logger.info("PyTorch version {} available.".format(torch.__version__))
else:
logger.info("Disabling PyTorch because USE_TF is set")
_torch_available = False
except ImportError:
_torch_available = False # pylint: disable=invalid-name
try:
USE_TF = os.environ.get("USE_TF", "AUTO").upper()
USE_TORCH = os.environ.get("USE_TORCH", "AUTO").upper()
if USE_TF in ("1", "ON", "YES", "AUTO") and USE_TORCH not in ("1", "ON", "YES"):
import tensorflow as tf
assert hasattr(tf, "__version__") and int(tf.__version__[0]) >= 2
_tf_available = True # pylint: disable=invalid-name
logger.info("TensorFlow version {} available.".format(tf.__version__))
else:
logger.info("Disabling Tensorflow because USE_TORCH is set")
_tf_available = False
except (ImportError, AssertionError):
_tf_available = False # pylint: disable=invalid-name
try:
from torch.hub import _get_torch_home
torch_cache_home = _get_torch_home()
except ImportError:
torch_cache_home = os.path.expanduser(
os.getenv("TORCH_HOME", os.path.join(os.getenv("XDG_CACHE_HOME", "~/.cache"), "torch"))
)
default_cache_path = os.path.join(torch_cache_home, "transformers")
try:
from pathlib import Path
PYTORCH_PRETRAINED_BERT_CACHE = Path(
os.getenv("PYTORCH_TRANSFORMERS_CACHE", os.getenv("PYTORCH_PRETRAINED_BERT_CACHE", default_cache_path))
)
except (AttributeError, ImportError):
PYTORCH_PRETRAINED_BERT_CACHE = os.getenv(
"PYTORCH_TRANSFORMERS_CACHE", os.getenv("PYTORCH_PRETRAINED_BERT_CACHE", default_cache_path)
)
PYTORCH_TRANSFORMERS_CACHE = PYTORCH_PRETRAINED_BERT_CACHE # Kept for backward compatibility
TRANSFORMERS_CACHE = PYTORCH_PRETRAINED_BERT_CACHE # Kept for backward compatibility
WEIGHTS_NAME = "pytorch_model.bin"
TF2_WEIGHTS_NAME = "tf_model.h5"
TF_WEIGHTS_NAME = "model.ckpt"
CONFIG_NAME = "config.json"
MODEL_CARD_NAME = "modelcard.json"
MULTIPLE_CHOICE_DUMMY_INPUTS = [[[0], [1]], [[0], [1]]]
DUMMY_INPUTS = [[7, 6, 0, 0, 1], [1, 2, 3, 0, 0], [0, 0, 0, 4, 5]]
DUMMY_MASK = [[1, 1, 1, 1, 1], [1, 1, 1, 0, 0], [0, 0, 0, 1, 1]]
S3_BUCKET_PREFIX = "https://s3.amazonaws.com/models.huggingface.co/bert"
CLOUDFRONT_DISTRIB_PREFIX = "https://d2ws9o8vfrpkyk.cloudfront.net"
def is_torch_available():
return _torch_available
def is_tf_available():
return _tf_available
def add_start_docstrings(*docstr):
def docstring_decorator(fn):
fn.__doc__ = "".join(docstr) + (fn.__doc__ if fn.__doc__ is not None else "")
return fn
return docstring_decorator
def add_start_docstrings_to_callable(*docstr):
def docstring_decorator(fn):
class_name = ":class:`~transformers.{}`".format(fn.__qualname__.split(".")[0])
intro = " The {} forward method, overrides the :func:`__call__` special method.".format(class_name)
note = r"""
.. note::
Although the recipe for forward pass needs to be defined within
this function, one should call the :class:`Module` instance afterwards
instead of this since the former takes care of running the
pre and post processing steps while the latter silently ignores them.
"""
fn.__doc__ = intro + note + "".join(docstr) + (fn.__doc__ if fn.__doc__ is not None else "")
return fn
return docstring_decorator
def add_end_docstrings(*docstr):
def docstring_decorator(fn):
fn.__doc__ = fn.__doc__ + "".join(docstr)
return fn
return docstring_decorator
def is_remote_url(url_or_filename):
parsed = urlparse(url_or_filename)
return parsed.scheme in ("http", "https", "s3")
def hf_bucket_url(identifier, postfix=None, cdn=False) -> str:
endpoint = CLOUDFRONT_DISTRIB_PREFIX if cdn else S3_BUCKET_PREFIX
if postfix is None:
return "/".join((endpoint, identifier))
else:
return "/".join((endpoint, identifier, postfix))
def url_to_filename(url, etag=None):
"""
Convert `url` into a hashed filename in a repeatable way.
If `etag` is specified, append its hash to the url's, delimited
by a period.
If the url ends with .h5 (Keras HDF5 weights) adds '.h5' to the name
so that TF 2.0 can identify it as a HDF5 file
(see https://github.com/tensorflow/tensorflow/blob/00fad90125b18b80fe054de1055770cfb8fe4ba3/tensorflow/python/keras/engine/network.py#L1380)
"""
url_bytes = url.encode("utf-8")
url_hash = sha256(url_bytes)
filename = url_hash.hexdigest()
if etag:
etag_bytes = etag.encode("utf-8")
etag_hash = sha256(etag_bytes)
filename += "." + etag_hash.hexdigest()
if url.endswith(".h5"):
filename += ".h5"
return filename
def filename_to_url(filename, cache_dir=None):
"""
Return the url and etag (which may be ``None``) stored for `filename`.
Raise ``EnvironmentError`` if `filename` or its stored metadata do not exist.
"""
if cache_dir is None:
cache_dir = TRANSFORMERS_CACHE
if isinstance(cache_dir, Path):
cache_dir = str(cache_dir)
cache_path = os.path.join(cache_dir, filename)
if not os.path.exists(cache_path):
raise EnvironmentError("file {} not found".format(cache_path))
meta_path = cache_path + ".json"
if not os.path.exists(meta_path):
raise EnvironmentError("file {} not found".format(meta_path))
with open(meta_path, encoding="utf-8") as meta_file:
metadata = json.load(meta_file)
url = metadata["url"]
etag = metadata["etag"]
return url, etag
def cached_path(
url_or_filename,
cache_dir=None,
force_download=False,
proxies=None,
resume_download=False,
user_agent=None,
extract_compressed_file=False,
force_extract=False,
local_files_only=False,
) -> Optional[str]:
"""
Given something that might be a URL (or might be a local path),
determine which. If it's a URL, download the file and cache it, and
return the path to the cached file. If it's already a local path,
make sure the file exists and then return the path.
Args:
cache_dir: specify a cache directory to save the file to (overwrite the default cache dir).
force_download: if True, re-dowload the file even if it's already cached in the cache dir.
resume_download: if True, resume the download if incompletly recieved file is found.
user_agent: Optional string or dict that will be appended to the user-agent on remote requests.
extract_compressed_file: if True and the path point to a zip or tar file, extract the compressed
file in a folder along the archive.
force_extract: if True when extract_compressed_file is True and the archive was already extracted,
re-extract the archive and overide the folder where it was extracted.
Return:
None in case of non-recoverable file (non-existent or inaccessible url + no cache on disk).
Local path (string) otherwise
"""
if cache_dir is None:
cache_dir = TRANSFORMERS_CACHE
if isinstance(url_or_filename, Path):
url_or_filename = str(url_or_filename)
if isinstance(cache_dir, Path):
cache_dir = str(cache_dir)
if is_remote_url(url_or_filename):
# URL, so get it from the cache (downloading if necessary)
output_path = get_from_cache(
url_or_filename,
cache_dir=cache_dir,
force_download=force_download,
proxies=proxies,
resume_download=resume_download,
user_agent=user_agent,
local_files_only=local_files_only,
)
elif os.path.exists(url_or_filename):
# File, and it exists.
output_path = url_or_filename
elif urlparse(url_or_filename).scheme == "":
# File, but it doesn't exist.
raise EnvironmentError("file {} not found".format(url_or_filename))
else:
# Something unknown
raise ValueError("unable to parse {} as a URL or as a local path".format(url_or_filename))
if extract_compressed_file:
if not is_zipfile(output_path) and not tarfile.is_tarfile(output_path):
return output_path
# Path where we extract compressed archives
# We avoid '.' in dir name and add "-extracted" at the end: "./model.zip" => "./model-zip-extracted/"
output_dir, output_file = os.path.split(output_path)
output_extract_dir_name = output_file.replace(".", "-") + "-extracted"
output_path_extracted = os.path.join(output_dir, output_extract_dir_name)
if os.path.isdir(output_path_extracted) and os.listdir(output_path_extracted) and not force_extract:
return output_path_extracted
# Prevent parallel extractions
lock_path = output_path + ".lock"
with FileLock(lock_path):
shutil.rmtree(output_path_extracted, ignore_errors=True)
os.makedirs(output_path_extracted)
if is_zipfile(output_path):
with ZipFile(output_path, "r") as zip_file:
zip_file.extractall(output_path_extracted)
zip_file.close()
elif tarfile.is_tarfile(output_path):
tar_file = tarfile.open(output_path)
tar_file.extractall(output_path_extracted)
tar_file.close()
else:
raise EnvironmentError("Archive format of {} could not be identified".format(output_path))
return output_path_extracted
return output_path
def split_s3_path(url):
"""Split a full s3 path into the bucket name and path."""
parsed = urlparse(url)
if not parsed.netloc or not parsed.path:
raise ValueError("bad s3 path {}".format(url))
bucket_name = parsed.netloc
s3_path = parsed.path
# Remove '/' at beginning of path.
if s3_path.startswith("/"):
s3_path = s3_path[1:]
return bucket_name, s3_path
def s3_request(func):
"""
Wrapper function for s3 requests in order to create more helpful error
messages.
"""
@wraps(func)
def wrapper(url, *args, **kwargs):
try:
return func(url, *args, **kwargs)
except ClientError as exc:
if int(exc.response["Error"]["Code"]) == 404:
raise EnvironmentError("file {} not found".format(url))
else:
raise
return wrapper
@s3_request
def s3_etag(url, proxies=None):
"""Check ETag on S3 object."""
s3_resource = boto3.resource("s3", config=Config(proxies=proxies))
bucket_name, s3_path = split_s3_path(url)
s3_object = s3_resource.Object(bucket_name, s3_path)
return s3_object.e_tag
@s3_request
def s3_get(url, temp_file, proxies=None):
"""Pull a file directly from S3."""
s3_resource = boto3.resource("s3", config=Config(proxies=proxies))
bucket_name, s3_path = split_s3_path(url)
s3_resource.Bucket(bucket_name).download_fileobj(s3_path, temp_file)
def http_get(url, temp_file, proxies=None, resume_size=0, user_agent=None):
ua = "transformers/{}; python/{}".format(__version__, sys.version.split()[0])
if is_torch_available():
ua += "; torch/{}".format(torch.__version__)
if is_tf_available():
ua += "; tensorflow/{}".format(tf.__version__)
if isinstance(user_agent, dict):
ua += "; " + "; ".join("{}/{}".format(k, v) for k, v in user_agent.items())
elif isinstance(user_agent, str):
ua += "; " + user_agent
headers = {"user-agent": ua}
if resume_size > 0:
headers["Range"] = "bytes=%d-" % (resume_size,)
response = requests.get(url, stream=True, proxies=proxies, headers=headers)
if response.status_code == 416: # Range not satisfiable
return
content_length = response.headers.get("Content-Length")
total = resume_size + int(content_length) if content_length is not None else None
progress = tqdm(
unit="B",
unit_scale=True,
total=total,
initial=resume_size,
desc="Downloading",
disable=bool(logger.getEffectiveLevel() == logging.NOTSET),
)
for chunk in response.iter_content(chunk_size=1024):
if chunk: # filter out keep-alive new chunks
progress.update(len(chunk))
temp_file.write(chunk)
progress.close()
def get_from_cache(
url,
cache_dir=None,
force_download=False,
proxies=None,
etag_timeout=10,
resume_download=False,
user_agent=None,
local_files_only=False,
) -> Optional[str]:
"""
Given a URL, look for the corresponding file in the local cache.
If it's not there, download it. Then return the path to the cached file.
Return:
None in case of non-recoverable file (non-existent or inaccessible url + no cache on disk).
Local path (string) otherwise
"""
if cache_dir is None:
cache_dir = TRANSFORMERS_CACHE
if isinstance(cache_dir, Path):
cache_dir = str(cache_dir)
os.makedirs(cache_dir, exist_ok=True)
etag = None
if not local_files_only:
# Get eTag to add to filename, if it exists.
if url.startswith("s3://"):
etag = s3_etag(url, proxies=proxies)
else:
try:
response = requests.head(url, allow_redirects=True, proxies=proxies, timeout=etag_timeout)
if response.status_code == 200:
etag = response.headers.get("ETag")
except (EnvironmentError, requests.exceptions.Timeout):
# etag is already None
pass
filename = url_to_filename(url, etag)
# get cache path to put the file
cache_path = os.path.join(cache_dir, filename)
# etag is None = we don't have a connection, or url doesn't exist, or is otherwise inaccessible.
# try to get the last downloaded one
if etag is None:
if os.path.exists(cache_path):
return cache_path
else:
matching_files = [
file
for file in fnmatch.filter(os.listdir(cache_dir), filename + ".*")
if not file.endswith(".json") and not file.endswith(".lock")
]
if len(matching_files) > 0:
return os.path.join(cache_dir, matching_files[-1])
else:
# If files cannot be found and local_files_only=True,
# the models might've been found if local_files_only=False
# Notify the user about that
if local_files_only:
raise ValueError(
"Cannot find the requested files in the cached path and outgoing traffic has been"
" disabled. To enable model look-ups and downloads online, set 'local_files_only'"
" to False."
)
return None
# From now on, etag is not None.
if os.path.exists(cache_path) and not force_download:
return cache_path
# Prevent parallel downloads of the same file with a lock.
lock_path = cache_path + ".lock"
with FileLock(lock_path):
if resume_download:
incomplete_path = cache_path + ".incomplete"
@contextmanager
def _resumable_file_manager():
with open(incomplete_path, "a+b") as f:
yield f
temp_file_manager = _resumable_file_manager
if os.path.exists(incomplete_path):
resume_size = os.stat(incomplete_path).st_size
else:
resume_size = 0
else:
temp_file_manager = partial(tempfile.NamedTemporaryFile, dir=cache_dir, delete=False)
resume_size = 0
# Download to temporary file, then copy to cache dir once finished.
# Otherwise you get corrupt cache entries if the download gets interrupted.
with temp_file_manager() as temp_file:
logger.info("%s not found in cache or force_download set to True, downloading to %s", url, temp_file.name)
# GET file object
if url.startswith("s3://"):
if resume_download:
logger.warn('Warning: resumable downloads are not implemented for "s3://" urls')
s3_get(url, temp_file, proxies=proxies)
else:
http_get(url, temp_file, proxies=proxies, resume_size=resume_size, user_agent=user_agent)
logger.info("storing %s in cache at %s", url, cache_path)
os.rename(temp_file.name, cache_path)
logger.info("creating metadata file for %s", cache_path)
meta = {"url": url, "etag": etag}
meta_path = cache_path + ".json"
with open(meta_path, "w") as meta_file:
json.dump(meta, meta_file)
return cache_path
if is_tf_available():
import tensorflow as tf
if is_torch_available():
import torch
logger = logging.getLogger(__name__)
SPECIAL_TOKENS_MAP_FILE = "special_tokens_map.json"
ADDED_TOKENS_FILE = "added_tokens.json"
TOKENIZER_CONFIG_FILE = "tokenizer_config.json"
@contextmanager
def truncate_and_pad(
tokenizer: BaseTokenizer,
max_length: int,
stride: int,
strategy: str,
pad_to_max_length: bool,
padding_side: str,
pad_token_id: int,
pad_token_type_id: int,
pad_token: str,
):
"""
This contextmanager is in charge of defining the truncation and the padding strategies and then
restore the tokenizer settings afterwards.
This contextmanager assumes the provider tokenizer has no padding / truncation strategy
before the managed section. If your tokenizer set a padding / truncation strategy before,
then it will be reset to no padding/truncation when exiting the managed section.
:param tokenizer:
:param max_length:
:param stride:
:param strategy:
:param pad_to_max_length:
:param padding_side:
:param pad_token_id:
:param pad_token_type_id:
:param pad_token:
:return:
"""
# Handle all the truncation and padding stuff
if max_length is not None:
tokenizer.enable_truncation(max_length, stride=stride, strategy=strategy)
if pad_to_max_length and (pad_token and pad_token_id >= 0):
tokenizer.enable_padding(
max_length=max_length,
direction=padding_side,
pad_id=pad_token_id,
pad_type_id=pad_token_type_id,
pad_token=pad_token,
)
elif pad_to_max_length:
logger.warning(
"Disabled padding because no padding token set (pad_token: {}, pad_token_id: {}).\n"
"To remove this error, you can add a new pad token and then resize model embedding:\n"
"\ttokenizer.pad_token = '<PAD>'\n\tmodel.resize_token_embeddings(len(tokenizer))".format(
pad_token, pad_token_id
)
)
yield
if max_length is not None:
tokenizer.no_truncation()
if pad_to_max_length and (pad_token and pad_token_id >= 0):
tokenizer.no_padding()
class PreTrainedTokenizer(object):
""" Base class for all tokenizers.
Handle all the shared methods for tokenization and special tokens as well as methods downloading/caching/loading pretrained tokenizers as well as adding tokens to the vocabulary.
This class also contain the added tokens in a unified way on top of all tokenizers so we don't have to handle the specific vocabulary augmentation methods of the various underlying dictionary structures (BPE, sentencepiece...).
Class attributes (overridden by derived classes):
- ``vocab_files_names``: a python ``dict`` with, as keys, the ``__init__`` keyword name of each vocabulary file required by the model, and as associated values, the filename for saving the associated file (string).
- ``pretrained_vocab_files_map``: a python ``dict of dict`` the high-level keys being the ``__init__`` keyword name of each vocabulary file required by the model, the low-level being the `short-cut-names` (string) of the pretrained models with, as associated values, the `url` (string) to the associated pretrained vocabulary file.
- ``max_model_input_sizes``: a python ``dict`` with, as keys, the `short-cut-names` (string) of the pretrained models, and as associated values, the maximum length of the sequence inputs of this model, or None if the model has no maximum input size.
- ``pretrained_init_configuration``: a python ``dict`` with, as keys, the `short-cut-names` (string) of the pretrained models, and as associated values, a dictionnary of specific arguments to pass to the ``__init__``method of the tokenizer class for this pretrained model when loading the tokenizer with the ``from_pretrained()`` method.
Parameters:
- ``bos_token``: (`Optional`) string: a beginning of sentence token. Will be associated to ``self.bos_token`` and ``self.bos_token_id``
- ``eos_token``: (`Optional`) string: an end of sentence token. Will be associated to ``self.eos_token`` and ``self.eos_token_id``
- ``unk_token``: (`Optional`) string: an unknown token. Will be associated to ``self.unk_token`` and ``self.unk_token_id``
- ``sep_token``: (`Optional`) string: a separation token (e.g. to separate context and query in an input sequence). Will be associated to ``self.sep_token`` and ``self.sep_token_id``
- ``pad_token``: (`Optional`) string: a padding token. Will be associated to ``self.pad_token`` and ``self.pad_token_id``
- ``cls_token``: (`Optional`) string: a classification token (e.g. to extract a summary of an input sequence leveraging self-attention along the full depth of the model). Will be associated to ``self.cls_token`` and ``self.cls_token_id``
- ``mask_token``: (`Optional`) string: a masking token (e.g. when training a model with masked-language modeling). Will be associated to ``self.mask_token`` and ``self.mask_token_id``
- ``additional_special_tokens``: (`Optional`) list: a list of additional special tokens. Adding all special tokens here ensure they won't be split by the tokenization process. Will be associated to ``self.additional_special_tokens`` and ``self.additional_special_tokens_ids``
"""
vocab_files_names = {}
pretrained_vocab_files_map = {}
pretrained_init_configuration = {}
max_model_input_sizes = {}
model_input_names = ["token_type_ids", "attention_mask"]
SPECIAL_TOKENS_ATTRIBUTES = [
"bos_token",
"eos_token",
"unk_token",
"sep_token",
"pad_token",
"cls_token",
"mask_token",
"additional_special_tokens",
]
padding_side = "right"
NO_PAD_TOKEN_FOR_BATCH_MSG = (
"No padding token is set for this model, therefore no batch can be made with uneven "
"sequences. Set a padding token or adjust the lengths of the sequences building the "
"batch so that every sequence is of the same length."
)
UNEVEN_SEQUENCES_FOR_BATCH_MSG = (
"The sequences building the batch are not of the same size, no tensor "
"can be built. Set `pad_to_max_length=True` to pad the smaller sequences"
"up to the larger sequence's length."
)
@property
def bos_token(self):
""" Beginning of sentence token (string). Log an error if used while not having been set. """
if self._bos_token is None:
logger.error("Using bos_token, but it is not set yet.")
return self._bos_token
@property
def eos_token(self):
""" End of sentence token (string). Log an error if used while not having been set. """
if self._eos_token is None:
logger.error("Using eos_token, but it is not set yet.")
return self._eos_token
@property
def unk_token(self):
""" Unknown token (string). Log an error if used while not having been set. """
if self._unk_token is None:
logger.error("Using unk_token, but it is not set yet.")
return self._unk_token
@property
def sep_token(self):
""" Separation token (string). E.g. separate context and query in an input sequence. Log an error if used while not having been set. """
if self._sep_token is None:
logger.error("Using sep_token, but it is not set yet.")
return self._sep_token
@property
def pad_token(self):
""" Padding token (string). Log an error if used while not having been set. """
if self._pad_token is None:
logger.error("Using pad_token, but it is not set yet.")
return self._pad_token
@property
def cls_token(self):
""" Classification token (string). E.g. to extract a summary of an input sequence leveraging self-attention along the full depth of the model. Log an error if used while not having been set. """
if self._cls_token is None:
logger.error("Using cls_token, but it is not set yet.")
return self._cls_token
@property
def mask_token(self):
""" Mask token (string). E.g. when training a model with masked-language modeling. Log an error if used while not having been set. """
if self._mask_token is None:
logger.error("Using mask_token, but it is not set yet.")
return self._mask_token
@property
def additional_special_tokens(self):
""" All the additional special tokens you may want to use (list of strings). Log an error if used while not having been set. """
if self._additional_special_tokens is None:
logger.error("Using additional_special_tokens, but it is not set yet.")
return self._additional_special_tokens
@bos_token.setter
def bos_token(self, value):
self._bos_token = value
@eos_token.setter
def eos_token(self, value):
self._eos_token = value
@unk_token.setter
def unk_token(self, value):
self._unk_token = value
@sep_token.setter
def sep_token(self, value):
self._sep_token = value
@pad_token.setter
def pad_token(self, value):
self._pad_token = value
@cls_token.setter
def cls_token(self, value):
self._cls_token = value
@mask_token.setter
def mask_token(self, value):
self._mask_token = value
@additional_special_tokens.setter
def additional_special_tokens(self, value):
self._additional_special_tokens = value
@property
def bos_token_id(self):
""" Id of the beginning of sentence token in the vocabulary. Log an error if used while not having been set. """
return self.convert_tokens_to_ids(self.bos_token)
@property
def eos_token_id(self):
""" Id of the end of sentence token in the vocabulary. Log an error if used while not having been set. """
return self.convert_tokens_to_ids(self.eos_token)
@property
def unk_token_id(self):
""" Id of the unknown token in the vocabulary. Log an error if used while not having been set. """
return self.convert_tokens_to_ids(self.unk_token)
@property
def sep_token_id(self):
""" Id of the separation token in the vocabulary. E.g. separate context and query in an input sequence. Log an error if used while not having been set. """
return self.convert_tokens_to_ids(self.sep_token)
@property
def pad_token_id(self):
""" Id of the padding token in the vocabulary. Log an error if used while not having been set. """
return self.convert_tokens_to_ids(self.pad_token)
@property
def pad_token_type_id(self):
""" Id of the padding token type in the vocabulary."""
return self._pad_token_type_id
@property
def cls_token_id(self):
""" Id of the classification token in the vocabulary. E.g. to extract a summary of an input sequence leveraging self-attention along the full depth of the model. Log an error if used while not having been set. """
return self.convert_tokens_to_ids(self.cls_token)
@property
def mask_token_id(self):
""" Id of the mask token in the vocabulary. E.g. when training a model with masked-language modeling. Log an error if used while not having been set. """
return self.convert_tokens_to_ids(self.mask_token)
@property
def additional_special_tokens_ids(self):
""" Ids of all the additional special tokens in the vocabulary (list of integers). Log an error if used while not having been set. """
return self.convert_tokens_to_ids(self.additional_special_tokens)
def get_vocab(self):
""" Returns the vocabulary as a dict of {token: index} pairs. `tokenizer.get_vocab()[token]` is equivalent to `tokenizer.convert_tokens_to_ids(token)` when `token` is in the vocab. """
raise NotImplementedError()
def __init__(self, max_len=None, **kwargs):
self._bos_token = None
self._eos_token = None
self._unk_token = None
self._sep_token = None
self._pad_token = None
self._cls_token = None
self._mask_token = None
self._pad_token_type_id = 0
self._additional_special_tokens = []
self.max_len = max_len if max_len is not None else int(1e12)
# Padding side is right by default and over-riden in subclasses. If specified in the kwargs, it is changed.
self.padding_side = kwargs.pop("padding_side", self.padding_side)
self.model_input_names = kwargs.pop("model_input_names", self.model_input_names)
# Added tokens
self.added_tokens_encoder = {}
self.unique_added_tokens_encoder = set()
self.added_tokens_decoder = {}
# inputs and kwargs for saving and re-loading (see ``from_pretrained`` and ``save_pretrained``)
self.init_inputs = ()
self.init_kwargs = {}
for key, value in kwargs.items():
if key in self.SPECIAL_TOKENS_ATTRIBUTES:
if key == "additional_special_tokens":
assert isinstance(value, (list, tuple)) and all(isinstance(t, str) for t in value)
else:
assert isinstance(value, str)
setattr(self, key, value)
@classmethod
def from_pretrained(cls, *inputs, **kwargs):
r"""
Instantiate a :class:`~transformers.PreTrainedTokenizer` (or a derived class) from a predefined tokenizer.
Args:
pretrained_model_name_or_path: either:
- a string with the `shortcut name` of a predefined tokenizer to load from cache or download, e.g.: ``bert-base-uncased``.
- a string with the `identifier name` of a predefined tokenizer that was user-uploaded to our S3, e.g.: ``dbmdz/bert-base-german-cased``.
- a path to a `directory` containing vocabulary files required by the tokenizer, for instance saved using the :func:`~transformers.PreTrainedTokenizer.save_pretrained` method, e.g.: ``./my_model_directory/``.
- (not applicable to all derived classes, deprecated) a path or url to a single saved vocabulary file if and only if the tokenizer only requires a single vocabulary file (e.g. Bert, XLNet), e.g.: ``./my_model_directory/vocab.txt``.
cache_dir: (`optional`) string:
Path to a directory in which a downloaded predefined tokenizer vocabulary files should be cached if the standard cache should not be used.
force_download: (`optional`) boolean, default False:
Force to (re-)download the vocabulary files and override the cached versions if they exists.
resume_download: (`optional`) boolean, default False:
Do not delete incompletely recieved file. Attempt to resume the download if such a file exists.
proxies: (`optional`) dict, default None:
A dictionary of proxy servers to use by protocol or endpoint, e.g.: {'http': 'foo.bar:3128', 'http://hostname': 'foo.bar:4012'}.
The proxies are used on each request.
inputs: (`optional`) positional arguments: will be passed to the Tokenizer ``__init__`` method.
kwargs: (`optional`) keyword arguments: will be passed to the Tokenizer ``__init__`` method. Can be used to set special tokens like ``bos_token``, ``eos_token``, ``unk_token``, ``sep_token``, ``pad_token``, ``cls_token``, ``mask_token``, ``additional_special_tokens``. See parameters in the doc string of :class:`~transformers.PreTrainedTokenizer` for details.
Examples::
# We can't instantiate directly the base class `PreTrainedTokenizer` so let's show our examples on a derived class: BertTokenizer
# Download vocabulary from S3 and cache.
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
# Download vocabulary from S3 (user-uploaded) and cache.
tokenizer = BertTokenizer.from_pretrained('dbmdz/bert-base-german-cased')
# If vocabulary files are in a directory (e.g. tokenizer was saved using `save_pretrained('./test/saved_model/')`)
tokenizer = BertTokenizer.from_pretrained('./test/saved_model/')
# If the tokenizer uses a single vocabulary file, you can point directly to this file
tokenizer = BertTokenizer.from_pretrained('./test/saved_model/my_vocab.txt')
# You can link tokens to special vocabulary when instantiating
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased', unk_token='<unk>')
# You should be sure '<unk>' is in the vocabulary when doing that.
# Otherwise use tokenizer.add_special_tokens({'unk_token': '<unk>'}) instead)
assert tokenizer.unk_token == '<unk>'
"""
return cls._from_pretrained(*inputs, **kwargs)
@classmethod
def _from_pretrained(cls, pretrained_model_name_or_path, *init_inputs, **kwargs):
cache_dir = kwargs.pop("cache_dir", None)
force_download = kwargs.pop("force_download", False)
resume_download = kwargs.pop("resume_download", False)
proxies = kwargs.pop("proxies", None)
local_files_only = kwargs.pop("local_files_only", False)
s3_models = list(cls.max_model_input_sizes.keys())
vocab_files = {}
init_configuration = {}
if pretrained_model_name_or_path in s3_models:
# Get the vocabulary from AWS S3 bucket
for file_id, map_list in cls.pretrained_vocab_files_map.items():
vocab_files[file_id] = map_list[pretrained_model_name_or_path]
if (
cls.pretrained_init_configuration
and pretrained_model_name_or_path in cls.pretrained_init_configuration
):
init_configuration = cls.pretrained_init_configuration[pretrained_model_name_or_path].copy()
else:
# Get the vocabulary from local files
logger.info(
"Model name '{}' not found in model shortcut name list ({}). "
"Assuming '{}' is a path, a model identifier, or url to a directory containing tokenizer files.".format(
pretrained_model_name_or_path, ", ".join(s3_models), pretrained_model_name_or_path
)
)
if os.path.isfile(pretrained_model_name_or_path) or is_remote_url(pretrained_model_name_or_path):
if len(cls.vocab_files_names) > 1:
raise ValueError(
"Calling {}.from_pretrained() with the path to a single file or url is not supported."
"Use a model identifier or the path to a directory instead.".format(cls.__name__)
)
logger.warning(
"Calling {}.from_pretrained() with the path to a single file or url is deprecated".format(
cls.__name__
)
)
file_id = list(cls.vocab_files_names.keys())[0]
vocab_files[file_id] = pretrained_model_name_or_path
else:
# At this point pretrained_model_name_or_path is either a directory or a model identifier name
additional_files_names = {
"added_tokens_file": ADDED_TOKENS_FILE,
"special_tokens_map_file": SPECIAL_TOKENS_MAP_FILE,
"tokenizer_config_file": TOKENIZER_CONFIG_FILE,
}
# Look for the tokenizer main vocabulary files + the additional tokens files
for file_id, file_name in {**cls.vocab_files_names, **additional_files_names}.items():
if os.path.isdir(pretrained_model_name_or_path):
full_file_name = os.path.join(pretrained_model_name_or_path, file_name)
if not os.path.exists(full_file_name):
logger.info("Didn't find file {}. We won't load it.".format(full_file_name))
full_file_name = None
else:
full_file_name = hf_bucket_url(pretrained_model_name_or_path, postfix=file_name)
vocab_files[file_id] = full_file_name
# Get files from url, cache, or disk depending on the case
try:
resolved_vocab_files = {}
for file_id, file_path in vocab_files.items():
if file_path is None:
resolved_vocab_files[file_id] = None
else:
resolved_vocab_files[file_id] = cached_path(
file_path,
cache_dir=cache_dir,
force_download=force_download,
proxies=proxies,
resume_download=resume_download,
local_files_only=local_files_only,
)
except EnvironmentError:
if pretrained_model_name_or_path in s3_models:
msg = "Couldn't reach server at '{}' to download vocabulary files."
else:
msg = (
"Model name '{}' was not found in tokenizers model name list ({}). "
"We assumed '{}' was a path or url to a directory containing vocabulary files "
"named {}, but couldn't find such vocabulary files at this path or url.".format(
pretrained_model_name_or_path,
", ".join(s3_models),
pretrained_model_name_or_path,
list(cls.vocab_files_names.values()),
)
)
raise EnvironmentError(msg)
if all(full_file_name is None for full_file_name in resolved_vocab_files.values()):
raise EnvironmentError(
"Model name '{}' was not found in tokenizers model name list ({}). "