Skip to content

Latest commit

 

History

History
220 lines (177 loc) · 12.1 KB

README.md

File metadata and controls

220 lines (177 loc) · 12.1 KB

Perspective Fields for Single Image Camera Calibration

Hugging Face Spaces

CVPR 2023 (✨Highlight)

Linyi Jin1, Jianming Zhang2, Yannick Hold-Geoffroy2, Oliver Wang2, Kevin Matzen2, Matthew Sticha1, David Fouhey1

1University of Michigan, 2Adobe Research


alt text

We propose Perspective Fields as a representation that models the local perspective properties of an image. Perspective Fields contain per-pixel information about the camera view, parameterized as an up vector and a latitude value.

swiping-1 swiping-2 swiping-3 swiping-4

📷 From Perspective Fields, you can also get camera parameters if you assume certain camera models. We provide models to recover camera roll, pitch, fov and principal point location.

Image 1 Image 2 Image 2

Updates

  • [April 2024]: 🚀 We've launched an inference version (main branch) with minimal dependencies. For training and evaluation, please checkout train_eval branch.
  • [July 2023]: We released a new model trained on 360cities and EDINA dataset, consisting of indoor🏠, outdoor🏙️, natural🌳, and egocentric👋 data!
  • [May 2023]: Live demo released 🤗. https://huggingface.co/spaces/jinlinyi/PerspectiveFields. Thanks Huggingface for funding this demo!

Table of Contents

Environment Setup

Inference

PerspectiveFields requires python >= 3.8 and PyTorch. | Pro tip: use mamba in place of conda for much faster installs.

# install pytorch compatible to your system https://pytorch.org/get-started/previous-versions/
conda install pytorch=1.10.0 torchvision cudatoolkit=11.3 -c pytorch
pip install git+https://github.com/jinlinyi/PerspectiveFields.git

Alternatively, install the package locally,

git clone git@github.com:jinlinyi/PerspectiveFields.git
# create virtual env
conda create -n perspective python=3.9
conda activate perspective
# install pytorch compatible to your system https://pytorch.org/get-started/previous-versions/
# conda install pytorch torchvision cudatoolkit -c pytorch
conda install pytorch=1.10.0 torchvision cudatoolkit=11.3 -c pytorch
# install Perspective Fields.
cd PerspectiveFields
pip install -e .

Train / Eval

For training and evaluation, please checkout the train_eval branch.

Demo

Here is a minimal script to run on a single image, see demo/demo.py:

import cv2
from perspective2d import PerspectiveFields
# specify model version
version = 'Paramnet-360Cities-edina-centered'
# load model
pf_model = PerspectiveFields(version).eval().cuda()
# load image
img_bgr = cv2.imread('assets/imgs/cityscape.jpg')
# inference
predictions = pf_model.inference(img_bgr=img_bgr)

# alternatively, inference a batch of images
predictions = pf_model.inference_batch(img_bgr_list=[img_bgr_0, img_bgr_1, img_bgr_2])

Model Zoo

Model Name and Weights Training Dataset Config File Outputs Expected input
[NEW]Paramnet-360Cities-edina-centered 360cities and EDINA paramnet_360cities_edina_rpf.yaml Perspective Field + camera parameters (roll, pitch, vfov) Uncropped, indoor🏠, outdoor🏙️, natural🌳, and egocentric👋 data
[NEW]Paramnet-360Cities-edina-uncentered 360cities and EDINA paramnet_360cities_edina_rpfpp.yaml Perspective Field + camera parameters (roll, pitch, vfov, cx, cy) Cropped, indoor🏠, outdoor🏙️, natural🌳, and egocentric👋 data
PersNet-360Cities 360cities cvpr2023.yaml Perspective Field Indoor🏠, outdoor🏙️, and natural🌳 data.
PersNet_paramnet-GSV-centered GSV paramnet_gsv_rpf.yaml Perspective Field + camera parameters (roll, pitch, vfov) Uncropped, street view🏙️ data.
PersNet_Paramnet-GSV-uncentered GSV paramnet_gsv_rpfpp.yaml Perspective Field + camera parameters (roll, pitch, vfov, cx, cy) Cropped, street view🏙️ data.

Coordinate Frame

alt text

yaw / azimuth: camera rotation about the y-axis pitch / elevation: camera rotation about the x-axis roll: camera rotation about the z-axis

Extrinsics: rotz(roll).dot(rotx(elevation)).dot(roty(azimuth))

Camera Parameters to Perspective Fields

Checkout Jupyter Notebook. Perspective Fields can be calculated from camera parameters. If you prefer, you can also manually calculate the corresponding Up-vector and Latitude map by following Equations 1 and 2 in our paper. Our code currently supports:

  1. Pinhole model [Hartley and Zisserman 2004] (Perspective Projection)
from perspective2d.utils.panocam import PanoCam
# define parameters
roll = 0
pitch = 20
vfov = 70
width = 640
height = 480
# get Up-vectors.
up = PanoCam.get_up(np.radians(vfov), width, height, np.radians(pitch), np.radians(roll))
# get Latitude.
lati = PanoCam.get_lat(np.radians(vfov), width, height, np.radians(pitch), np.radians(roll))
  1. Unified Spherical Model [Barreto 2006; Mei and Rives 2007] (Distortion).
xi = 0.5 # distortion parameter from Unified Spherical Model

x = -np.sin(np.radians(vfov/2))
z = np.sqrt(1 - x**2)
f_px_effective = -0.5*(width/2)*(xi+z)/x
crop, _, _, _, up, lat, xy_map = PanoCam.crop_distortion(equi_img,
                                             f=f_px_effective,
                                             xi=xi,
                                             H=height,
                                             W=width,
                                             az=yaw, # degrees
                                             el=-pitch,
                                             roll=-roll)

Visualize Perspective Fields

We provide a one-line code to blend Perspective Fields onto input image.

import matplotlib.pyplot as plt
from perspective2d.utils import draw_perspective_fields
# Draw up and lati on img. lati is in radians.
blend = draw_perspective_fields(img, up, lati)
# visualize with matplotlib
plt.imshow(blend)
plt.show()

Perspective Fields can serve as an easy visual check for correctness of the camera parameters.

  • For example, we can visualize the Perspective Fields based on calibration results from this awesome repo.

alt text

  • Left: We plot the perspective fields based on the numbers printed on the image, they look accurate😊;

  • Mid: If we try a number that is 10% off (0.72*0.9=0.648), we see mismatch in Up directions at the top right corner;

  • Right: If distortion is 20% off (0.72*0.8=0.576), the mismatch becomes more obvious.

Citation

If you find this code useful, please consider citing:

@inproceedings{jin2023perspective,
      title={Perspective Fields for Single Image Camera Calibration},
      author={Linyi Jin and Jianming Zhang and Yannick Hold-Geoffroy and Oliver Wang and Kevin Matzen and Matthew Sticha and David F. Fouhey},
      booktitle = {CVPR},
      year={2023}
}

Acknowledgment

This work was partially funded by the DARPA Machine Common Sense Program. We thank authors from A Deep Perceptual Measure for Lens and Camera Calibration for releasing their code on Unified Spherical Model.