-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathRL_agent.py
106 lines (87 loc) · 3.82 KB
/
RL_agent.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
import torch
import torch.nn as nn
import torch.optim as optim
import numpy as np
from baseGame import Connect4
class DQN(nn.Module):
def __init__(self, input_size, output_size):
super(DQN, self).__init__()
self.fc1 = nn.Linear(input_size, 128)
self.fc2 = nn.Linear(128, 64)
self.fc3 = nn.Linear(64, output_size)
def forward(self, x):
x = torch.relu(self.fc1(x))
x = torch.relu(self.fc2(x))
return self.fc3(x)
class DQNAgent:
def __init__(self, state_size, action_size):
self.state_size = state_size
self.action_size = action_size
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
self.policy_net = DQN(state_size, action_size).to(self.device)
self.target_net = DQN(state_size, action_size).to(self.device)
self.target_net.load_state_dict(self.policy_net.state_dict())
self.target_net.eval()
self.optimizer = optim.Adam(self.policy_net.parameters())
self.memory = []
self.batch_size = 64
self.gamma = 0.99
self.epsilon = 1.0
self.epsilon_decay = 0.995
self.epsilon_min = 0.01
def get_action(self, state, valid_moves):
if np.random.rand() <= self.epsilon:
return np.random.choice(valid_moves)
state = torch.FloatTensor(state).unsqueeze(0).to(self.device)
q_values = self.policy_net(state)
valid_q_values = q_values[0][valid_moves]
return valid_moves[torch.argmax(valid_q_values).item()]
def remember(self, state, action, reward, next_state, done):
self.memory.append((state, action, reward, next_state, done))
def replay(self):
if len(self.memory) < self.batch_size:
return
batch = random.sample(self.memory, self.batch_size)
states, actions, rewards, next_states, dones = zip(*batch)
states = torch.FloatTensor(states).to(self.device)
actions = torch.LongTensor(actions).to(self.device)
rewards = torch.FloatTensor(rewards).to(self.device)
next_states = torch.FloatTensor(next_states).to(self.device)
dones = torch.FloatTensor(dones).to(self.device)
current_q_values = self.policy_net(states).gather(1, actions.unsqueeze(1))
next_q_values = self.target_net(next_states).max(1)[0].detach()
target_q_values = rewards + (1 - dones) * self.gamma * next_q_values
loss = nn.MSELoss()(current_q_values, target_q_values.unsqueeze(1))
self.optimizer.zero_grad()
loss.backward()
self.optimizer.step()
if self.epsilon > self.epsilon_min:
self.epsilon *= self.epsilon_decay
def update_target_network(self):
self.target_net.load_state_dict(self.policy_net.state_dict())
def train_dqn_agent(episodes=10000, update_target_every=100):
env = Connect4()
state_size = env.rows * env.cols
action_size = env.cols
agent = DQNAgent(state_size, action_size)
for episode in range(episodes):
state = env.reset()
state = np.array(state).flatten()
done = False
total_reward = 0
while not done:
valid_moves = env.get_valid_moves()
action = agent.get_action(state, valid_moves)
next_state, reward, done, _ = env.make_move(action)
next_state = np.array(next_state).flatten()
agent.remember(state, action, reward, next_state, done)
state = next_state
total_reward += reward
agent.replay()
if episode % update_target_every == 0:
agent.update_target_network()
print(f"Episode: {episode}, Total Reward: {total_reward}, Epsilon: {agent.epsilon:.2f}")
return agent
if __name__ == "__main__":
trained_agent = train_dqn_agent()
torch.save(trained_agent.policy_net.state_dict(), "connect4_dqn.pth")