-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy path04c-induction3.tex
130 lines (104 loc) · 4.14 KB
/
04c-induction3.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
\include{commons}
\lecturetitle{Lecture 4c: Mathematical Induction 3}
\begin{frame}\frametitle{Review: Mathematical Induction}
\begin{tcolorbox}
Suppose that you want to prove that property $P(n)$ is true for
every natural number $n$.\\
Suppose that we can prove the following two facts:
{\bf Base case:} $P(1)$ \\
{\bf Inductive step:} For any $k\geq 1$, $P(k)\Rightarrow P(k+1)$ \\
The {\bf Principle of Mathematical Induction} states that $P(n)$
is true for every natural number $n$.
\end{tcolorbox}
The assumption $P(k)$ in the inductive step is usually referred to
as {\bf the Induction Hypothesis}.
\end{frame}
\begin{frame}\frametitle{The Induction Hypothesis}
\begin{theorem}
For any integer $n\geq 1$, $\frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} + \cdots +\frac{1}{n^2} < 2$.
\end{theorem}
\pause
\begin{proof}
The statement $P(n)$ that we want to prove is ``$\frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} + \cdots +\frac{1}{n^2} < 2$''.
\pause
\vspace{0.1in}
{\bf Case case:} For $n=1$, the statement is true because $1<2$.
\pause
\vspace{0.1in}
{\bf Inductive step:} For $k\geq 1$, let's assume $P(k)$ and we prove that $P(k+1)$ is true.
\pause
The induction hypothesis is: $\frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} + \cdots +\frac{1}{k^2} < 2$.
We want to show $P(k+1)$, i.e., $\frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} + \cdots +\frac{1}{k^2}+\frac{1}{(k+1)^2} < 2$.
Then...
\end{proof}
\end{frame}
\begin{frame}\frametitle{Strengtening the Induction Hypothesis (1)}
\begin{itemize}
\item
Is the assumption
\[ \frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} + \cdots +\frac{1}{k^2} < 2.\]
``strong'' enough to prove
\[ \frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} + \cdots +\frac{1}{k^2}+\frac{1}{(k+1)^2} < 2 \ \ ?\]
Why?
\pause
\item To prove $P(k+1)$, we need a ``gap'' between the LHS and 2, so
that we can add $1/(k+1)$ without blowing up the RHS.
\end{itemize}
\end{frame}
\begin{frame}\frametitle{Strengtening the Induction Hypothesis (2)}
\begin{itemize}
\item Let's see a few values of the sum:
\begin{itemize}
\item $1/1 = 1.$ \pause
\item $1/1 + 1/4 = 1.25.$ \pause
\item $1/1 + 1/4 + 1/9 \approx 1.361.$ \pause
\item $1/1 + 1/4 + 1/9 + 1/16 \approx 1.4236.$ \pause
\item $1/1 + 1/4 + 1/9 + 1/16 + 1/25 \approx 1.4636.$
\end{itemize}
Yes, there is a gap. But how large?
\pause
\item We need the gap to be large enough to insert $1/(k+1)^2$.
\pause
\item After a ``mysterious'' moment, we observe that
\[ \frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} + \cdots +\frac{1}{n^2} \leq 2 - \frac{1}{n}.\]
\end{itemize}
\end{frame}
\begin{frame}\frametitle{Strengtening the Induction Hypothesis (3)}
\begin{theorem}
For any integer $n\geq 1$, $\frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} + \cdots +\frac{1}{n^2} \leq 2 - \frac{1}{n}$.
\end{theorem}
\pause
\begin{proof}
{\footnotesize
(... the beginning is left out ...)
{\bf Inductive step:} For $k\geq 1$, assume that $ \frac{1}{1^2} + \frac{1}{2^2} + \cdots +\frac{1}{k^2} \leq 2 - \frac{1}{k}. $
\pause
Adding $1/(k+1)^2$ on both sides, we get
\[ \frac{1}{1^2} + \frac{1}{2^2} + \cdots +\frac{1}{k^2}+\frac{1}{(k+1)^2}
\leq 2 - \frac{1}{k} +\frac{1}{(k+1)^2}
= 2 - \left(\frac{1}{k} - \frac{1}{(k+1)^2}\right).\]
\pause
Since $1/k - 1/(k+1) = 1/(k(k+1))$, we have that
\[1/(k+1) = 1/k - 1/(k(k+1)) < 1/k - 1/(k+1)^2.\]
\pause
Therefore, we conclude that
\[
\frac{1}{1^2} + \frac{1}{2^2} + \cdots +\frac{1}{k^2}+\frac{1}{(k+1)^2}
\leq 2 - \left(\frac{1}{k} - \frac{1}{(k+1)^2}\right)
\leq 2 - \frac{1}{k+1},
\]
as required.
}
\end{proof}
\end{frame}
\begin{frame}\frametitle{A Lesson learned}
\begin{itemize}
\item
Is a stronger statement easier to prove?
\pause
\item
In this case, the statement is indeed stronger, but the induction
hypothesis gets stronger as well. Sometimes, this works out
nicely.
\end{itemize}
\end{frame}