-
Notifications
You must be signed in to change notification settings - Fork 0
/
mme_calculator.py
181 lines (133 loc) · 5.69 KB
/
mme_calculator.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
import os
import argparse
from sklearn.metrics import accuracy_score, precision_score, recall_score, confusion_matrix
eval_type_dict = {
"Perception": ["existence", "count", "position", "color", "posters", "celebrity", "scene", "landmark", "artwork", "OCR"],
"Cognition": ["commonsense_reasoning", "numerical_calculation", "text_translation", "code_reasoning"]
}
class calculate_metrics:
def divide_chunks(self, l, n=2):
# looping till length l
for i in range(0, len(l), n):
yield l[i:i + n]
return
def parse_pred_ans(self, pred_ans):
pred_label = None
if pred_ans in ["yes", "no"]:
pred_label = pred_ans
else:
prefix_pred_ans = pred_ans[:4]
if "yes" in prefix_pred_ans:
pred_label = "yes"
elif "no" in prefix_pred_ans:
pred_label = "no"
else:
pred_label = "other"
return pred_label
def compute_metric(self, gts, preds):
assert len(gts) == len(preds)
label_map = {
"yes": 1,
"no": 0,
"other": -1,
}
gts = [label_map[x] for x in gts]
preds = [label_map[x] for x in preds]
acc = accuracy_score(gts, preds)
clean_gts = []
clean_preds = []
other_num = 0
for gt, pred in zip(gts, preds):
if pred == -1:
other_num += 1
continue
clean_gts.append(gt)
clean_preds.append(pred)
conf_mat = confusion_matrix(clean_gts, clean_preds, labels=[1,0])
precision = precision_score(clean_gts, clean_preds, average='binary')
recall = recall_score(clean_gts, clean_preds, average='binary')
tp, fn = conf_mat[0]
fp, tn = conf_mat[1]
metric_dict = dict()
metric_dict = {
"TP": tp,
"FN": fn,
"TN": tn,
"FP": fp,
"precision": precision,
"recall": recall,
"other_num": other_num,
"acc": acc,
}
return metric_dict
def process_result(self, results_dir, output_path=''):
if output_path: output_file = open(output_path, 'w', encoding='utf-8')
model_score_dict = dict()
for eval_type, task_name_list in eval_type_dict.items():
print("===========", eval_type, "===========")
scores = 0
task_score_dict = dict()
for task_name in task_name_list:
task_txt = os.path.join(results_dir, task_name + ".txt")
lines = open(task_txt, 'r',encoding='utf-8').readlines()
chunk_lines = list(self.divide_chunks(lines)) # one image corresponds to two questions
img_num = len(chunk_lines)
task_other_ans_num = 0
task_score = 0
acc_plus_correct_num = 0
gts = []
preds = []
for img_items in chunk_lines:
try:
assert len(img_items) == 2
except:
import pdb; pdb.set_trace()
img_correct_num = 0
for img_item in img_items:
try:
img_name, question, gt_ans, pred_ans = img_item.split("\t")
except:
continue
#import pdb; pdb.set_trace()
gt_ans = gt_ans.lower()
pred_ans = pred_ans.lower()
assert gt_ans in ["yes", "no"] # gt can only be yes or no.
pred_ans = self.parse_pred_ans(pred_ans)
assert pred_ans in ["yes", "no", "other"]
gts.append(gt_ans)
preds.append(pred_ans)
if gt_ans == pred_ans:
img_correct_num += 1
if pred_ans not in ["yes", "no"]:
task_other_ans_num += 1
if img_correct_num == 2:
acc_plus_correct_num += 1
# cal TP precision acc, etc.
metric_dict = self.compute_metric(gts, preds)
acc_plus = acc_plus_correct_num / img_num
metric_dict["acc_plus"] = acc_plus
for k, v in metric_dict.items():
if k in ["acc", "acc_plus"]:
task_score += v*100
task_score_dict[task_name] = task_score
scores += task_score
print("total score:", scores, "\n")
for task_name, score in task_score_dict.items():
print("\t", task_name, " score:", score)
print("\n")
if output_path:
line = f"==========={eval_type}===========\ntotal score: {scores}\n"
output_file.write(line)
for task_name, score in task_score_dict.items():
line = f'\t{task_name} score:{score}\n'
output_file.write(line)
output_file.write('\n')
if output_path: output_file.close()
return
if __name__ == "__main__":
cal = calculate_metrics()
parser = argparse.ArgumentParser()
parser.add_argument('--results_dir', default='/data/vol1/evaluation_datasets/MME/results/vlm0115_3', type=str)
args = parser.parse_args()
results_dir = args.results_dir
cal.process_result(results_dir)