-
Notifications
You must be signed in to change notification settings - Fork 21
/
Copy pathmain.py
61 lines (52 loc) · 1.69 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
import data_v1
import data_v2
from loss import make_loss
from model import make_model
from optim import make_optimizer, make_scheduler
# import engine_v1
# import engine_v2
import engine_v3
import os.path as osp
from option import args
import utils.utility as utility
from utils.model_complexity import compute_model_complexity
from torch.utils.collect_env import get_pretty_env_info
import yaml
import torch
if args.config != "":
with open(args.config, "r") as f:
config = yaml.full_load(f)
for op in config:
setattr(args, op, config[op])
torch.backends.cudnn.benchmark = True
# loader = data.Data(args)
ckpt = utility.checkpoint(args)
loader = data_v2.ImageDataManager(args)
model = make_model(args, ckpt)
optimzer = make_optimizer(args, model)
loss = make_loss(args, ckpt) if not args.test_only else None
start = -1
if args.load != "":
start, model, optimizer = ckpt.resume_from_checkpoint(
osp.join(ckpt.dir, "model-latest.pth"), model, optimzer
)
start = start - 1
if args.pre_train != "":
ckpt.load_pretrained_weights(model, args.pre_train)
scheduler = make_scheduler(args, optimzer, start)
# print('[INFO] System infomation: \n {}'.format(get_pretty_env_info()))
ckpt.write_log(
"[INFO] Model parameters: {com[0]} flops: {com[1]}".format(
com=compute_model_complexity(model, (1, 3, args.height, args.width))
)
)
engine = engine_v3.Engine(args, model, optimzer, scheduler, loss, loader, ckpt)
# engine = engine.Engine(args, model, loss, loader, ckpt)
n = start + 1
while not engine.terminate():
n += 1
engine.train()
if args.test_every != 0 and n % args.test_every == 0:
engine.test()
elif n == args.epochs:
engine.test()