-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathpandas_gp.py
executable file
·331 lines (262 loc) · 12.1 KB
/
pandas_gp.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
# -*- coding: utf-8 -*-
"""
Standard GP Algorithm (Strongly typed)
Created on Sun Aug 21 10:40:14 2016
@author: jm
"""
import operator
import math
import random
import cPickle
import math
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import networkx as nx
from deap import algorithms
from deap import base
from deap import creator
from deap import tools
from deap import gp
#from scoop import futures
#import multiprocessing
primes = [2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,71,73,79,83,89,
97,101,103,107,109,113,127,131,137,139,149,151,157,163,167,173,179,
181,191,193,197,199,211,223,227,229,233,239,241,251,257,263,269,271,
277,281,283,293,307,311,313,317,331,337,347,349,353,359,367,373,379,
383,389,397,401,409,419,421,431,433,439,443,449,457,461,463,467,479,
487,491,499] #,503,509,521,523,541,547,557,563,569,571,577,587,593,599,
# 601,607,613,617,619,631,641,643,647,653,659,661,673,677,683,691,701,
# 709,719,727,733,739,743,751,757,761,769,773,787,797,809,811,821,823,
# 827,829,839,853,857,859,863,877,881,883,887,907,911,919,929,937,941,
# 947,953,967,971,977,983,991,997,1009,1013,1019,1021,1031,1033,1039,
# 1049,1051,1061,1063,1069,1087,1091,1093,1097,1103,1109,1117,1123,
# 1129,1151,1153,1163,1171,1181,1187,1193,1201,1213,1217,1223,1229,
# 1231,1237,1249,1259,1277,1279,1283,1289,1291,1297,1301,1303,1307,
# 1319,1321,1327,1361,1367,1373,1381,1399,1409,1423,1427,1429,1433,
# 1439,1447,1451,1453,1459,1471,1481,1483,1487,1489,1493,1499,1511,
# 1523,1531,1543,1549,1553,1559,1567,1571,1579,1583,1597,1601,1607,
# 1609,1613,1619,1621,1627,1637,1657,1663,1667,1669,1693,1697,1699,
# 1709,1721,1723,1733,1741,1747,1753,1759,1777,1783,1787,1789,1801,
# 1811,1823,1831,1847,1861,1867,1871,1873,1877,1879,1889,1901,1907,
# 1913,1931,1933,1949,1951,1973,1979,1987,1993,1997,1999,2003,2011,
# 2017,2027,2029,2039,2053,2063,2069,2081,2083,2087,2089,2099,2111,
# 2113,2129,2131,2137,2141,2143,2153,2161,2179,2203,2207,2213,2221,
# 2237,2239,2243,2251,2267,2269,2273,2281,2287,2293,2297,2309,2311,
# 2333,2339,2341,2347,2351,2357,2371,2377,2381,2383,2389,2393,2399,
# 2411,2417,2423,2437,2441,2447,2459,2467,2473,2477,2503,2521,2531,
# 2539,2543,2549,2551,2557,2579,2591,2593,2609,2617,2621,2633,2647,
# 2657,2659,2663,2671,2677,2683,2687,2689,2693,2699,2707,2711,2713,
# 2719,2729,2731,2741,2749,2753,2767,2777,2789,2791,2797,2801,2803,
# 2819,2833,2837,2843,2851,2857,2861,2879,2887,2897,2903,2909,2917,
# 2927,2939,2953,2957,2963,2969,2971,2999,3001,3011,3019,3023,3037,
# 3041,3049,3061,3067,3079,3083,3089,3109,3119,3121,3137,3163,3167,
# 3169,3181,3187,3191,3203,3209,3217,3221,3229,3251,3253,3257,3259,
# 3271,3299,3301,3307,3313,3319,3323,3329,3331,3343,3347,3359,3361,
# 3371,3373,3389,3391,3407,3413,3433,3449,3457,3461,3463,3467,3469,
# 3491,3499,3511,3517,3527,3529,3533,3539,3541,3547,3557,3559,3571,
# 3581,3583,3593,3607,3613,3617,3623,3631,3637,3643,3659,3671,3673,
# 3677,3691,3697,3701,3709,3719,3727,3733,3739,3761,3767,3769,3779,
# 3793,3797,3803,3821,3823,3833,3847,3851,3853,3863,3877,3881,3889,
# 3907,3911,3917,3919,3923,3929,3931,3943,3947,3967,3989,4001,4003,
# 4007,4013,4019,4021,4027,4049,4051,4057,4073,4079,4091,4093,4099,
# 4111,4127,4129,4133,4139,4153,4157,4159,4177,4201,4211,4217,4219,
# 4229,4231]
# load the data
ibex = cPickle.load(open("ibex.pickle", "rb"))
#we need to have pd_df_bool terminals for gp to work
#better to have them as a column in the dataset
#then to use a terminal calling np.ones or np.zeros
#as we are not constrained by the size of the vector
ibex["Ones"] = True
ibex["Zeros"] = False
# Transaction costs - 10 Eur per contract
#cost = 30
cost = 50 # equiv (30/10000) * 10 points
# Split into train and test
train = ibex["2000":"2015"].copy()
test = ibex["2016":].copy()
# Functions and terminal for GP
class pd_df_float(object):
pass
class pd_df_bool(object):
pass
def f_gt(df_in, f_value):
return df_in > f_value
def f_lt(df_in, f_value):
return df_in < f_value
def protectedDiv(left, right):
try: return left / right
except ZeroDivisionError: return 0.0
def pd_add(left, right):
return left + right
def pd_subtract(left, right):
return left - right
def pd_multiply(left, right):
return left * right
def pd_divide(left, right):
return left / right
def pd_diff(df_in, _periods):
return df_in.diff(periods=abs(_periods))
def sma(df_in, periods):
return pd.rolling_mean(df_in, abs(periods))
def ewma(df_in, periods):
if abs(periods) < 2:
return df_in
else:
return pd.ewma(df_in, abs(periods), min_periods=abs(periods))
def hh(df_in, periods):
if abs(periods) < 2:
return df_in
else:
return pd.rolling_max(df_in, abs(periods), min_periods=abs(periods))
def ll(df_in, periods):
if abs(periods) < 2:
return df_in
else:
return pd.rolling_min(df_in, abs(periods), min_periods=abs(periods))
def pd_std(df_in, periods):
if abs(periods) < 2:
return df_in
else:
return pd.rolling_std(df_in, abs(periods), min_periods=abs(periods))
pset = gp.PrimitiveSetTyped('MAIN', [pd_df_float,
pd_df_float,
pd_df_float,
pd_df_float,
pd_df_float,
pd_df_bool,
pd_df_bool],
pd_df_bool)
pset.renameArguments(ARG0='Open')
pset.renameArguments(ARG1='High')
pset.renameArguments(ARG2='Low')
pset.renameArguments(ARG3='Close')
pset.renameArguments(ARG4='Volume')
# need to have pd_df_bool terminals for GP to work
pset.renameArguments(ARG5='Ones')
pset.renameArguments(ARG6='Zeros')
pset.addPrimitive(sma, [pd_df_float, int], pd_df_float, name="sma")
pset.addPrimitive(ewma, [pd_df_float, int], pd_df_float, name="ewma")
pset.addPrimitive(hh, [pd_df_float, int], pd_df_float, name="hh")
pset.addPrimitive(ll, [pd_df_float, int], pd_df_float, name="ll")
pset.addPrimitive(pd_std, [pd_df_float, int], pd_df_float, name="pd_std")
pset.addPrimitive(np.log, [pd_df_float], pd_df_float)
pset.addPrimitive(pd_diff, [pd_df_float, int], pd_df_float)
pset.addPrimitive(pd_add, [pd_df_float, pd_df_float], pd_df_float, name="pd_add")
pset.addPrimitive(pd_subtract, [pd_df_float, pd_df_float], pd_df_float, name="pd_sub")
pset.addPrimitive(pd_multiply, [pd_df_float, pd_df_float], pd_df_float, name="pd_mul")
pset.addPrimitive(pd_divide, [pd_df_float, pd_df_float], pd_df_float, name="pd_div")
pset.addPrimitive(operator.add, [int, int], int, name="add")
pset.addPrimitive(operator.sub, [int, int], int, name="sub")
#pset.addPrimitive(operator.mul, [int, int], int, name="mul")
pset.addPrimitive(protectedDiv, [int, int], int, name="div")
pset.addPrimitive(f_gt, [pd_df_float, float], pd_df_bool )
pset.addPrimitive(f_lt, [pd_df_float, float], pd_df_bool )
pset.addEphemeralConstant("short", lambda: random.randint(2,60), int)
pset.addEphemeralConstant("medium", lambda: random.randint(60,100), int)
pset.addEphemeralConstant("long", lambda: random.randint(100,200), int)
pset.addEphemeralConstant("xtralong", lambda: random.randint(200,20000), int)
pset.addEphemeralConstant("rand100", lambda: random.randint(0,100), int)
pset.addEphemeralConstant("randfloat", lambda: np.random.normal() / 100. , float)
pset.addPrimitive(operator.lt, [pd_df_float, pd_df_float], pd_df_bool)
pset.addPrimitive(operator.gt, [pd_df_float, pd_df_float], pd_df_bool)
pset.addPrimitive(np.bitwise_and, [pd_df_bool, pd_df_bool], pd_df_bool)
pset.addPrimitive(np.bitwise_or, [pd_df_bool, pd_df_bool], pd_df_bool)
pset.addPrimitive(np.bitwise_xor, [pd_df_bool, pd_df_bool], pd_df_bool)
pset.addPrimitive(np.bitwise_not, [pd_df_bool], pd_df_bool)
pset.addPrimitive(operator.add, [float, float], float, name="f_add")
pset.addPrimitive(operator.sub, [float, float], float, name="f_sub")
pset.addPrimitive(protectedDiv, [float, float], float, name="f_div")
pset.addPrimitive(operator.mul, [float, float], float, name="f_mul")
#Better to pass this terminals as arguments (ARG5 and ARG6)
#pset.addTerminal(pd.TimeSeries(data=[1] * len(train), index=train.index, dtype=bool), pd_df_bool, name="ones")
#pset.addTerminal(pd.TimeSeries(data=[0] * len(train), index=train.index, dtype=bool), pd_df_bool, name="zeros")
pset.addTerminal(1.618, float)
pset.addTerminal(0.1618, float)
pset.addTerminal(0.01618, float)
pset.addTerminal(0.001618, float)
pset.addTerminal(-0.001618, float)
pset.addTerminal(-0.01618, float)
pset.addTerminal(-0.1618, float)
pset.addTerminal(-1.618, float)
pset.addTerminal(1, int)
for p in primes:
pset.addTerminal(p, int)
for f in np.arange(0,0.2,0.002):
pset.addTerminal(f, float)
pset.addTerminal(-f, float)
creator.create('FitnessMax', base.Fitness, weights=(1.0,))
creator.create('Individual', gp.PrimitiveTree, fitness=creator.FitnessMax)
toolbox = base.Toolbox()
toolbox.register('expr', gp.genHalfAndHalf, pset=pset, min_=1, max_=6)
toolbox.register('individual', tools.initIterate, creator.Individual, toolbox.expr)
toolbox.register('population', tools.initRepeat, list, toolbox.individual)
toolbox.register('compile', gp.compile, pset=pset)
def evalFitness(individual, points):
func = toolbox.compile(expr=individual)
s = func(points.Open, points.High, points.Low, points.Close, points.Volume, points.Ones, points.Zeros)
# transform from bool to int
s = s*1
w = (s * points.Close.diff()) - np.abs(s.diff())*cost
w.dropna(inplace=True)
# W_win = w[w>0].sum()
# W_lose = abs(w[w<0].sum())
#
# profit_factor = protectedDiv(W_win, W_lose)
# return profit_factor ,
sharpe = w.mean() / w.std() * math.sqrt(600*255)
if np.isnan(sharpe) or np.isinf(sharpe):
sharpe = -99999
return sharpe,
toolbox.register('evaluate', evalFitness, points=train)
toolbox.register('select', tools.selTournament, tournsize=3)
toolbox.register('mate', gp.cxOnePoint)
toolbox.register('expr_mut', gp.genFull, min_=0, max_=3)
toolbox.register('mutate', gp.mutUniform, expr=toolbox.expr_mut, pset=pset)
def plot(individual):
nodes, edges, labels = gp.graph(individual)
g = nx.Graph()
g.add_nodes_from(nodes)
g.add_edges_from(edges)
pos = nx.drawing.nx_agraph.graphviz_layout(g, prog="dot")
nx.draw_networkx_nodes(g, pos)
nx.draw_networkx_edges(g, pos)
nx.draw_networkx_labels(g, pos, labels)
plt.show()
if __name__ == '__main__':
#random.seed(10)
pop = toolbox.population(n=200)
hof = tools.HallOfFame(1)
stats = tools.Statistics(lambda ind: ind.fitness.values)
stats.register('avg', np.mean)
stats.register('min', np.min)
stats.register('max', np.max)
pop, log = algorithms.eaMuPlusLambda(pop, toolbox, 160, 160, 0.6, 0.1, 50, stats=stats, halloffame=hof)
# get the info of best solution
print("Best solution found...")
print(hof[0])
plot(hof[0])
f=toolbox.compile(hof[0])
# Check training results
s=f(train.Open, train.High, train.Low, train.Close, train.Volume, train.Ones, train.Zeros)
s=s*1
w = (s * train.Close.diff()) - np.abs(s.diff())*cost
W = w.cumsum()
df_plot = pd.DataFrame(index=train.index)
df_plot['GP Strategy'] = W
df_plot['IBEX'] = train.Close
#Normalize to 1 the start so we can compare plots.
df_plot['IBEX'] = df_plot['IBEX'] / df_plot['IBEX'][0]
df_plot.plot()
# Check testing results
s=f(test.Open, test.High, test.Low, test.Close, test.Volume, test.Ones, test.Zeros)
s=s*1
w = (s * test.Close.diff()) - np.abs(s.diff())*cost
W = w.cumsum()
df_plot = pd.DataFrame(index=test.index)
df_plot['GP Strategy'] = W
df_plot['IBEX'] = test.Close
#Normalize to 1 the start so we can compare plots.
df_plot['IBEX'] = df_plot['IBEX'] / df_plot['IBEX'][0]
df_plot.plot()