-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathnode_dataset.py
256 lines (205 loc) · 11.8 KB
/
node_dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
import os
import os.path as osp
import torch
import random
import numpy as np
import pandas as pd
from torch_geometric.data import (Data, InMemoryDataset, download_url,
extract_gz, extract_tar, extract_zip)
from torch_geometric.data.makedirs import makedirs
from torch_geometric.utils import to_undirected, remove_isolated_nodes, remove_self_loops
class NodeVesselGraph(InMemoryDataset):
r"""A variety of generated graph datasets including whole mouse brain vasculature graphs from
`"Machine learning analysis of whole mouse brain vasculature"
<https://www.nature.com/articles/s41592-020-0792-1>`_ and
`"Micrometer-resolution reconstruction and analysis of whole mouse brain vasculature
by synchrotron-based phase-contrast tomographic microscopy"
<https://www.biorxiv.org/content/10.1101/2021.03.16.435616v1.full#fn-3>`_ and
`"Brain microvasculature has a common topology with local differences in geometry that match metabolic load>`_
<https://www.sciencedirect.com/science/article/abs/pii/S0896627321000805>`_
paper.
Args:
root (string): Root directory where the dataset should be saved.
name (string): The name of the (partial dataset / collection) (one of :obj:`"synthetic"`,
:obj:`"vessap"`, :obj:`"vessapcd"`, :obj:`"italo"`)
splitting_strategy (string): Random or spatial splitting.
If :obj:`"random"`, random splitting strategy.
If :obj:`"spatial"`, spatial splitting strategy.
If :obj:`"combined"`, 50% / 50% random and spatially sampled links.
transform (callable, optional): A function/transform that takes in an
:obj:`torch_geometric.data.Data` object and returns a transformed
version. The data object will be transformed before every access.
(default: :obj:`None`)
pre_transform (callable, optional): A function/transform that takes in
an :obj:`torch_geometric.data.Data` object and returns a
transformed version. The data object will be transformed before
being saved to disk. (default: :obj:`None`)
pre_filter (callable, optional): A function that takes in an
:obj:`torch_geometric.data.Data` object and returns a boolean
value, indicating whether the data object should be included in the
final dataset. (default: :obj:`None`)
use_edge_attr (bool, optional): If :obj:`True`, the dataset will
contain additional continuous edge attributes (if present).
(default: :obj:`True`)
"""
# file structure is dataset_name/folder_of_file/folder_of_file_{nodes,edges}.csv
available_datasets = {
'synthetic_graph_1': {'folder':'synthetic.zip',
'url':'https://syncandshare.lrz.de/dl/fiXfSD14pKGM54L5BqZxF8vF/synthetic_graph_1.zip',
'AlanBrainAtlas':False},
'synthetic_graph_2': {'folder':'synthetic.zip',
'url':'https://syncandshare.lrz.de/dl/fiEDhbBHmqawVwKaBeWwHgT8/synthetic_graph_2.zip',
'AlanBrainAtlas':False},
'synthetic_graph_3': {'folder':'synthetic.zip',
'url':'https://syncandshare.lrz.de/dl/fiPvTKvqhqNtQ8B6UyGfbvGi/synthetic_graph_3.zip',
'AlanBrainAtlas':False},
'synthetic_graph_4': {'folder':'synthetic.zip',
'url':'https://syncandshare.lrz.de/dl/fiFq7BVkRZekbBYQSVYX8L6K/synthetic_graph_4.zip',
'AlanBrainAtlas':False},
'synthetic_graph_5': {'folder':'synthetic.zip',
'url':'https://syncandshare.lrz.de/dl/fi5dos737XVZxuyqQ5gmUW6p/synthetic_graph_5.zip',
'AlanBrainAtlas':False},
'BALBc_no1': {'folder': 'BALBc_no1.zip',
'url': 'https://syncandshare.lrz.de/dl/fiG21AiiCJE6mVRo6tUsNp4N/BALBc_no1.zip',
'AlanBrainAtlas': False},
'BALBc_no2': {'folder': 'BALBc-no2.zip',
'url': 'https://syncandshare.lrz.de/dl/fiS6KM5NvGKfLFrjiCzQh1X1/BALBc_no2.zip',
'AlanBrainAtlas': False},
'BALBc_no3': {'folder': 'BALBc-no3.zip',
'url': 'https://syncandshare.lrz.de/dl/fiD9e98baTK3FWC9iPhLQWd8/BALBc_no3.zip',
'AlanBrainAtlas': False},
'C57BL_6_no1': {'folder': 'C57BL_6_no1.zip',
'url': 'https://syncandshare.lrz.de/dl/fiVTuLxJeLrqyWdMBy5BGrug/C57BL_6_no1.zip',
'AlanBrainAtlas': False},
'C57BL_6_no2': {'folder': 'C57BL_6_no2.zip',
'url': 'https://syncandshare.lrz.de/dl/fiNFpZd5S9NYvUYzNwLgf5gW/C57BL_6_no2.zip',
'AlanBrainAtlas': False},
'C57BL_6_no3': {'folder': 'C57BL_6_no3.zip',
'url': 'https://syncandshare.lrz.de/dl/fi3Z62oab67735GLQXZyd2Wd/C57BL_6_no3.zip',
'AlanBrainAtlas': False},
'CD1-E_no1': {'folder': 'CD1-E-no1.zip',
'url': 'https://syncandshare.lrz.de/dl/fiQs4v6kXvGBviqnuT7BAxjK/CD1-E_no1.zip',
'AlanBrainAtlas': False},
'CD1-E_no2': {'folder': 'CD1-E-no2.zip',
'url': 'https://syncandshare.lrz.de/dl/fiJf6ukkGCdUQwXBKd4Leusp/CD1-E_no2.zip',
'AlanBrainAtlas': False},
'CD1-E_no3': {'folder': 'CD1-E-no3.zip',
'url': 'https://syncandshare.lrz.de/dl/fiBkjGNxm7XW5R4gFTWp5MFP/CD1-E_no3.zip',
'AlanBrainAtlas': False},
## selected regions of interest
'node_vessap_roi1':{'folder': 'node_vessap_roi1.zip',
'url': 'https://syncandshare.lrz.de/dl/fi8w9EY1crCyP5aQ7nVpmWKF/node_vessap_roi1.zip',
'AlanBrainAtlas': False},
'node_vessap_roi3': {'folder': 'node_vessap_roi3.zip',
'url': 'https://syncandshare.lrz.de/dl/fiP4SFHzcU6Qkdm9Mbi16pQg/node_vessap_roi3.zip',
'AlanBrainAtlas': False},
}
def __init__(self, root, name, transform=None, pre_transform=None,
use_node_attr: bool = True, use_edge_attr: bool = True):
self.name = name#.lower()
# check if dataset name is valid
assert self.name in self.available_datasets.keys()
self.url = self.available_datasets[self.name]['url']
self.use_node_attr = use_node_attr
self.use_edge_attr = use_edge_attr
super(NodeVesselGraph, self).__init__(root, transform, pre_transform)
self.data, self.slices = torch.load(self.processed_paths[0])
@property
def raw_dir(self):
return osp.join(self.root, self.name, 'raw')
@property
def processed_dir(self):
return osp.join(self.root, self.name, 'processed')
@property
def raw_file_names(self):
# get subfolders of each graph
folder = osp.join(self.raw_dir, self.name)
subfolders = [f.path for f in os.scandir(folder) if f.is_dir()]
raw_file_names = []
for i in range(len(subfolders)):
# get the identifier
id = os.path.basename(os.path.normpath(subfolders[i]))
raw_file_names.add(osp.join(self.raw_dir, self.name, id, f'{id}_nodes_processed.csv'))
raw_file_names.add(osp.join(self.raw_dir, self.name, id, f'{id}_edges_processed.csv'))
print(raw_file_names)
return [raw_file_names]
@property
def processed_file_names(self):
return 'dataset.pt'
def _download(self):
if osp.isdir(self.raw_dir) and len(os.listdir(self.raw_dir)) > 0:
return
makedirs(self.raw_dir)
self.download()
def download(self):
path = download_url(self.url, self.raw_dir, log=True)
name = self.available_datasets[self.name]['folder']
if name.endswith('.tar.gz'):
extract_tar(path, self.raw_dir)
elif name.endswith('.tar.xz'):
extract_tar(path, self.raw_dir)
elif name.endswith('.gz'):
extract_gz(path, self.raw_dir)
elif name.endswith('.zip'):
extract_zip(path, self.raw_dir)
os.unlink(path)
def process(self):
# reproducible results
np.random.seed(123)
torch.manual_seed(123)
np.random.seed(123)
# holds all graphs
data_list = []
# get subfoldes of each mouse brain
folder = osp.join(self.raw_dir, self.name)
subfolders = [f.path for f in os.scandir(folder) if f.is_dir()]
for i in range(len(subfolders)):
# get the identifier
id = os.path.basename(os.path.normpath(subfolders[i]))
# read csv files for nodes and edges
print(osp.join(self.raw_dir, self.name, id, f'{id}_nodes_processed.csv'))
print(osp.join(self.raw_dir, self.name, id, f'{id}_edges_processed.csv'))
df_nodes = pd.read_csv(osp.join(self.raw_dir, self.name, id, f'{id}_nodes_processed.csv'), sep=';')
df_edges = pd.read_csv(osp.join(self.raw_dir, self.name, id, f'{id}_edges_processed.csv'), sep=';')
# PyTorch Geometrics Data Class Object
data = Data()
# store keys of node and edge features
data.node_attr_keys = ['pos_x', 'pos_y', 'pos_z', 'degree', 'isAtSampleBorder']
data.edge_attr_keys = ['length', 'distance', 'curveness', 'volume', 'avgCrossSection',
'minRadiusAvg', 'minRadiusStd', 'avgRadiusAvg', 'avgRadiusStd',
'maxRadiusAvg', 'maxRadiusStd', 'roundnessAvg', 'roundnessStd',
'node1_degree', 'node2_degree', 'num_voxels', 'hasNodeAtSampleBorder']
# Node feature matrix with shape [num_nodes, num_node_features]
data.x = torch.from_numpy(np.array(df_nodes[data.node_attr_keys].to_numpy()))
# Node position matrix with shape [num_nodes, num_dimensions]
data.pos = torch.from_numpy(np.array(df_nodes[['pos_x', 'pos_y', 'pos_z']].to_numpy())) # coordinates
# Graph connectivity COO format with shape [2, num_edges]
edge_index_source = np.array(df_edges[['node1id']])
edge_index_sink = np.array(df_edges[['node2id']])
edges = np.column_stack((edge_index_source, edge_index_sink))
# Edge feature matrix with shape [num_edges, num_edge_features]
edge_features = np.array(df_edges[data.edge_attr_keys].to_numpy())
# Filter vessels
data.edge_attr = torch.from_numpy(np.array(edge_features))
data.edge_index = torch.tensor(edges, dtype=torch.long).t().contiguous()
# convert the graph to an undirected graph
data.edge_index, data.edge_attr = to_undirected(edge_index=data.edge_index, edge_attr=data.edge_attr,
num_nodes=data.num_nodes, reduce="add")
# remove self loops
data.edge_index, data.edge_attr = remove_self_loops(data.edge_index, data.edge_attr)
# filter out isolated nodes
data.edge_index, data.edge_attr, node_mask = remove_isolated_nodes(edge_index=data.edge_index,
edge_attr=data.edge_attr,
num_nodes=data.num_nodes)
data.x = data.x[node_mask]
data.pos = data.pos[node_mask]
# append to other graphs
data_list.append(data)
if self.pre_filter is not None:
data_list = [data for data in data_list if self.pre_filter(data)]
if self.pre_transform is not None:
data_list = [self.pre_transform(data) for data in data_list]
data, slices = self.collate(data_list)
torch.save((data, slices), self.processed_paths[0])
def __repr__(self):
return '{}()'.format(self.__class__.__name__)