-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathtest_link_graph.py
72 lines (50 loc) · 2.56 KB
/
test_link_graph.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
import os
import os.path as osp
import torch
import numpy as np
import scipy
import pandas as pd
import argparse
import os
import torch_geometric.transforms as T
from torch_geometric.utils import to_networkx
from torch_geometric.data import Data
parser = argparse.ArgumentParser(description='display graph features and summary.')
parser.add_argument('-ds','--dataset',help='Specify the dataset you want to select', required=True)
parser.add_argument('-s','--splitting_strategy',help='Specify the dataset you want to select', required=True)
args = parser.parse_args()
selected_dataset = args.dataset
# import PyTorch libs
from link_dataset import LinkVesselGraph
def main():
dataset = LinkVesselGraph(root='data', name=selected_dataset, splitting_strategy=args.splitting_strategy, use_edge_attr=True, use_atlas=True)
print(f'Dataset: {dataset}:')
print('======================')
print(f'Number of graphs: {len(dataset)}')
print(f'Number of features: {dataset.num_features}')
print(f'Number of classes: {dataset.num_classes}')
data = dataset[0] # Get the first graph object.
print(data)
print('==============================================================')
# Gather some statistics about the graph.
print(f'Number of nodes in graph: {data.num_nodes}')
print(f'Number of edges in graph: {data.num_edges}')
print(f'Average node degree: {data.num_edges / data.num_nodes:.2f}')
print(f'Contains isolated nodes: {data.contains_isolated_nodes()}')
print(f'Contains self-loops: {data.contains_self_loops()}')
print(f'Is Undirected: {data.is_undirected()}')
print(f'Number of undirected edges', data.edge_index_undirected.size(dim=1))
print(f'Number of training edges', data.train_pos_edge_index.size(dim=1))
print(f'Number of validation edges', data.val_pos_edge_index.size(dim=1))
print(f'Number of test edges', data.test_pos_edge_index.size(dim=1))
# Caution: if you would like to convert all edges to networkx graph, please
# overwrite data.edge_index with data.edge_index_undirected.
# The link dataset adheres to the convention that only training edges are
# present in the data.edge_index. However, to obtain the full graph, we have to pass
# all edges to the networkx function.
data_undirected = Data(x=data.x, edge_index = data.edge_index_undirected,
edge_attr = data.edge_attr_undirected)
G = to_networkx (data_undirected, to_undirected=False)
print("Networkx: #nodes, #edges", G.number_of_nodes(), G.number_of_edges())
if __name__ == "__main__":
main()