-
Notifications
You must be signed in to change notification settings - Fork 4.6k
/
Copy pathinference.py
206 lines (147 loc) · 6.82 KB
/
inference.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
from typing import Tuple
import math
def normal_approximation_to_binomial(n: int, p: float) -> Tuple[float, float]:
"""Returns mu and sigma corresponding to a Binomial(n, p)"""
mu = p * n
sigma = math.sqrt(p * (1 - p) * n)
return mu, sigma
from scratch.probability import normal_cdf
# The normal cdf _is_ the probability the variable is below a threshold
normal_probability_below = normal_cdf
# It's above the threshold if it's not below the threshold
def normal_probability_above(lo: float,
mu: float = 0,
sigma: float = 1) -> float:
"""The probability that a N(mu, sigma) is greater than lo."""
return 1 - normal_cdf(lo, mu, sigma)
# It's between if it's less than hi, but not less than lo.
def normal_probability_between(lo: float,
hi: float,
mu: float = 0,
sigma: float = 1) -> float:
"""The probability that a N(mu, sigma) is between lo and hi."""
return normal_cdf(hi, mu, sigma) - normal_cdf(lo, mu, sigma)
# It's outside if it's not between
def normal_probability_outside(lo: float,
hi: float,
mu: float = 0,
sigma: float = 1) -> float:
"""The probability that a N(mu, sigma) is not between lo and hi."""
return 1 - normal_probability_between(lo, hi, mu, sigma)
from scratch.probability import inverse_normal_cdf
def normal_upper_bound(probability: float,
mu: float = 0,
sigma: float = 1) -> float:
"""Returns the z for which P(Z <= z) = probability"""
return inverse_normal_cdf(probability, mu, sigma)
def normal_lower_bound(probability: float,
mu: float = 0,
sigma: float = 1) -> float:
"""Returns the z for which P(Z >= z) = probability"""
return inverse_normal_cdf(1 - probability, mu, sigma)
def normal_two_sided_bounds(probability: float,
mu: float = 0,
sigma: float = 1) -> Tuple[float, float]:
"""
Returns the symmetric (about the mean) bounds
that contain the specified probability
"""
tail_probability = (1 - probability) / 2
# upper bound should have tail_probability above it
upper_bound = normal_lower_bound(tail_probability, mu, sigma)
# lower bound should have tail_probability below it
lower_bound = normal_upper_bound(tail_probability, mu, sigma)
return lower_bound, upper_bound
mu_0, sigma_0 = normal_approximation_to_binomial(1000, 0.5)
assert mu_0 == 500
assert 15.8 < sigma_0 < 15.9
# (469, 531)
lower_bound, upper_bound = normal_two_sided_bounds(0.95, mu_0, sigma_0)
assert 468.5 < lower_bound < 469.5
assert 530.5 < upper_bound < 531.5
# 95% bounds based on assumption p is 0.5
lo, hi = normal_two_sided_bounds(0.95, mu_0, sigma_0)
# actual mu and sigma based on p = 0.55
mu_1, sigma_1 = normal_approximation_to_binomial(1000, 0.55)
# a type 2 error means we fail to reject the null hypothesis
# which will happen when X is still in our original interval
type_2_probability = normal_probability_between(lo, hi, mu_1, sigma_1)
power = 1 - type_2_probability # 0.887
assert 0.886 < power < 0.888
hi = normal_upper_bound(0.95, mu_0, sigma_0)
# is 526 (< 531, since we need more probability in the upper tail)
type_2_probability = normal_probability_below(hi, mu_1, sigma_1)
power = 1 - type_2_probability # 0.936
assert 526 < hi < 526.1
assert 0.9363 < power < 0.9364
def two_sided_p_value(x: float, mu: float = 0, sigma: float = 1) -> float:
"""
How likely are we to see a value at least as extreme as x (in either
direction) if our values are from a N(mu, sigma)?
"""
if x >= mu:
# x is greater than the mean, so the tail is everything greater than x
return 2 * normal_probability_above(x, mu, sigma)
else:
# x is less than the mean, so the tail is everything less than x
return 2 * normal_probability_below(x, mu, sigma)
two_sided_p_value(529.5, mu_0, sigma_0) # 0.062
import random
extreme_value_count = 0
for _ in range(1000):
num_heads = sum(1 if random.random() < 0.5 else 0 # Count # of heads
for _ in range(1000)) # in 1000 flips,
if num_heads >= 530 or num_heads <= 470: # and count how often
extreme_value_count += 1 # the # is 'extreme'
# p-value was 0.062 => ~62 extreme values out of 1000
assert 59 < extreme_value_count < 65, f"{extreme_value_count}"
two_sided_p_value(531.5, mu_0, sigma_0) # 0.0463
tspv = two_sided_p_value(531.5, mu_0, sigma_0)
assert 0.0463 < tspv < 0.0464
upper_p_value = normal_probability_above
lower_p_value = normal_probability_below
upper_p_value(524.5, mu_0, sigma_0) # 0.061
upper_p_value(526.5, mu_0, sigma_0) # 0.047
p_hat = 525 / 1000
mu = p_hat
sigma = math.sqrt(p_hat * (1 - p_hat) / 1000) # 0.0158
normal_two_sided_bounds(0.95, mu, sigma) # [0.4940, 0.5560]
p_hat = 540 / 1000
mu = p_hat
sigma = math.sqrt(p_hat * (1 - p_hat) / 1000) # 0.0158
normal_two_sided_bounds(0.95, mu, sigma) # [0.5091, 0.5709]
from typing import List
def run_experiment() -> List[bool]:
"""Flips a fair coin 1000 times, True = heads, False = tails"""
return [random.random() < 0.5 for _ in range(1000)]
def reject_fairness(experiment: List[bool]) -> bool:
"""Using the 5% significance levels"""
num_heads = len([flip for flip in experiment if flip])
return num_heads < 469 or num_heads > 531
random.seed(0)
experiments = [run_experiment() for _ in range(1000)]
num_rejections = len([experiment
for experiment in experiments
if reject_fairness(experiment)])
assert num_rejections == 46
def estimated_parameters(N: int, n: int) -> Tuple[float, float]:
p = n / N
sigma = math.sqrt(p * (1 - p) / N)
return p, sigma
def a_b_test_statistic(N_A: int, n_A: int, N_B: int, n_B: int) -> float:
p_A, sigma_A = estimated_parameters(N_A, n_A)
p_B, sigma_B = estimated_parameters(N_B, n_B)
return (p_B - p_A) / math.sqrt(sigma_A ** 2 + sigma_B ** 2)
z = a_b_test_statistic(1000, 200, 1000, 180) # -1.14
assert -1.15 < z < -1.13
two_sided_p_value(z) # 0.254
assert 0.253 < two_sided_p_value(z) < 0.255
z = a_b_test_statistic(1000, 200, 1000, 150) # -2.94
two_sided_p_value(z) # 0.003
def B(alpha: float, beta: float) -> float:
"""A normalizing constant so that the total probability is 1"""
return math.gamma(alpha) * math.gamma(beta) / math.gamma(alpha + beta)
def beta_pdf(x: float, alpha: float, beta: float) -> float:
if x <= 0 or x >= 1: # no weight outside of [0, 1]
return 0
return x ** (alpha - 1) * (1 - x) ** (beta - 1) / B(alpha, beta)