-
Notifications
You must be signed in to change notification settings - Fork 18
/
index.html
833 lines (827 loc) · 44 KB
/
index.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
<!DOCTYPE html>
<html lang="en">
<head>
<title>Week 1 Introduction. MIDS W209 Information Visualization Slides</title>
<meta charset="utf-8">
<meta name="author" content="John Alexis Guerra Gómez">
<meta name="description" content="Week 1 Introduction. MIDS W209 Information Visualization Slides. ">
<meta name="apple-mobile-web-app-capable" content="yes">
<meta name="apple-mobile-web-app-status-bar-style" content="black-translucent">
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<link rel="stylesheet" href="https://fonts.googleapis.com/css?family=Fjalla+One|Raleway|PT+Sans+Narrow">
<link rel="stylesheet" href="https://use.typekit.net/yjc0afr.css">
<link rel="stylesheet" href="../plugin/highlight/monokai.css" id="highlight-theme">
<link href="../css/reveal.css" rel="stylesheet">
<link href="../css/theme/white.css" rel="stylesheet" id="theme">
<link href="../css/style.css" rel="stylesheet">
</head>
<body>
<div class="reveal">
<div class="slides">
<section>
<h1 class="title">Introduction<br><small>MIDS W209: Information Visualization</small></h1>
<div class="r-stretch"></div>
<div class="tiny"><a href="https://johnguerra.co/" target="_blank"><strong> John Alexis Guerra Gómez</strong></a><span> | john.guerra[at]gmail.com</span><a href="https://twitter.com/duto_guerra"> | @duto_guerra</a><br><a href="https://andyreagan.com/" target="_blank"><strong> Andy Reagan</strong></a><span> | andy[at]andyreagan.com</span><a href="https://twitter.com/andyreagan"> | @andyreagan</a><br><a href="https://johnguerra.co/lectures/MIDS_W209_Information_Visualization/01_Introduction/" target="_blank">https://johnguerra.co/lectures/MIDS_W209_Information_Visualization/01_Introduction/</a></div>
<div class="logo"><a href="https://datascience.berkeley.edu/"><img class="logo" src="../shared_images/UC_Berkeley_wordmark_cal_gold.png" alt="University Of California at Berkeley logo"></a></div>
<div class="tiny">Partially based on<a href="https://www.cs.ubc.ca/~tmm/talks.html#minicourse14"> slides from Tamara Munzner</a></div>
</section>
<section>
<section>
<h2>What we are going to learn</h2>
<ul>
<li>Infovis definition</li>
<li class="fragment">Why should we visualize?</li>
<li class="fragment">What are insights?</li>
<li class="fragment">Problem abstraction</li>
<li class="fragment">Visualization tools landscape</li>
</ul>
</section>
</section>
<section id="definitions">
<section>
<h1>Definitions</h1>
</section>
<section>
<h2>Defining Information Visualization (vis)</h2>
<p>Computer-based visualization systems provide visual representations of datasets<span class="fragment"> designed to help people carry out <strong>tasks</strong> more effectively.</span></p>
<p class="fragment">Why?</p>
</section>
<section>
<h2>Have the human in the loop</h2>
<p>Visualization is suitable when there is a need to <strong>augment human capabilities</strong> rather than replace people with computational decision-making methods.</p>
</section>
<section>
<h2>Three requirements</h2><br>
<div class="flex">
<div class="third fragment"><strong>Users</strong></div>
<div class="third fragment"><strong>Data</strong></div>
<div class="third fragment"><strong>Tasks</strong></div>
</div><br>
<div class="fragment">A good visualization enables <strong>users</strong> to complete <strong>tasks</strong> effectively on the <strong>data</strong>.</div>
</section>
<section>
<h2>When not to use vis</h2>
<p>Don’t need vis when fully automatic solution exists and is trusted</p>
</section>
<section>
<h2>But...</h2>
<ul>
<li>Many analysis problems are ill-specified.</li>
<ul>
<li class="fragment">Don’t know exactly what questions to ask in advance</li>
</ul>
</ul>
</section>
<section>
<h2>What vis allows for</h2>
<ul class="small">
<li class="fragment">Long-term use for end users (e.g., exploratory analysis of scientific data)</li>
<li class="fragment">Presentation of known results</li>
<li class="fragment">Stepping stone to better understanding of requirements before developing models</li>
<li class="fragment">Helps developers of automatic solution refine/debug, determine parameters</li>
<li class="fragment">Helps end users of automatic solutions verify, build trust</li>
</ul>
</section>
<section>
<h2>Why use an external representation?</h2>
<p>Computer-based visualization systems provide <strong>visual representations</strong> of datasets designed to help people carry out tasks more effectively.</p>
</section>
<section>
<h2 class="demo">Why use an external representation?</h2>
<p class="fragment">External representation: <span class="fragment">replace cognition <span class="fragment">with perception</span></span></p><img class="fragment side" src="../shared_images/cognition.png"><img class="fragment side" src="../shared_images/perception.png"><span class="clear"></span>
<p class="small tiny fragment">[Cerebral: Visualizing Multiple Experimental Conditions on a Graph with Biological Context. Barsky, Munzner, Gardy, and Kincaid. IEEE TVCG (Proc. InfoVis) 14(6):1253-1260, 2008.]</p>
</section>
<section>
<h2>Why use a computer in the loop?</h2>
<p><strong>Computer-based</strong> visualization systems provide visual representations of datasets designed to help people carry out tasks more effectively.</p>
</section>
<section>
<h2>Why have a computer in the loop?</h2>
<ul>
<li class="fragment">Beyond human patience</li>
<li class="fragment">Scale to large datasets</li>
<li class="fragment">Support interactivity</li>
</ul>
</section>
<section>
<h2>Why depend on vision?</h2>
<p>Computer-based visualization systems provide <strong>visual</strong> representations of datasets designed to help people carry out tasks more effectively.</p>
</section>
<section>
<h3>Why depend on vision?</h3>
<ul class="tiny">
<li class="fragment">Human visual system is high-bandwidth channel to brain</li>
<ul>
<li class="fragment">Overview possible due to background processing</li>
<li class="fragment">Subjective experience of seeing everything simultaneously</li>
<li class="fragment">Significant processing occurs in parallel and pre-attentively</li>
</ul>
<li class="fragment">Sound: lower bandwidth and different semantics</li>
<ul>
<li class="fragment">Overview not supported</li>
<li class="fragment">Subjective experience of sequential stream</li>
</ul>
<li class="fragment">Touch/haptics: impoverished record/replay capacity
<ul>
<li class="fragment">Only very low-bandwidth communication thus far</li>
</ul>
</li>
<li class="fragment">Taste, smell: no viable record/replay devices</li>
</ul>
</section>
<section>
<h2>Why show data in detail?</h2>
<ul>
<li class="fragment">Summaries lose information.</li>
<ul>
<li class="fragment">Confirm expected and find unexpected patterns.</li>
<li class="fragment">Assess validity of statistical model.</li>
</ul>
</ul>
</section>
<section>
<div><img src="../shared_images/UC_Berkeley_wordmark_cal_gold.png" alt="University Of California at Berkeley logo"></div>
</section>
</section>
<section id="vizDesignSpace">
<section>
<h1>Visualization Design Space</h1>
</section>
<section>
<h1>Idioms</h1>
<p>Distinct approach to creating or manipulating visual representations</p>
</section>
<section>
<h2>Think about...</h2>
<p>In how many ways can you visualize the numbers 13 and 23?</p>
</section>
<section>
<h2>Idiom design space</h2>
<p>The design space of possible vis idioms is huge and includes the considerations of both how to create and how to interact with visual representations.</p>
</section>
<section>
<h2>Idioms</h2>
<ul class="small">
<li class="fragment">How to draw it: <strong>visual encoding</strong> idiom</li>
<ul>
<li class="fragment">Many possibilities for how to create</li>
</ul>
<li class="fragment">How to manipulate it: <strong>interaction</strong> idiom</li>
<ul>
<li class="fragment">Even more possibilities</li>
<li class="fragment">Make single idiom dynamic</li>
<li class="fragment">Link multiple idioms together through interaction</li>
</ul>
</ul>
</section>
<section>
<h3>Why focus on tasks and effectiveness?</h3>
<p>Computer-based visualization systems provide visual representations of datasets designed to help people carry out <strong>tasks</strong> more <strong>effectively</strong>.</p>
</section>
<section>
<h3>Why focus on tasks and effectiveness?</h3>
<ul class="small">
<li class="fragment">Tasks serve as constraint on design (as do data)</li>
<ul>
<li class="fragment">Idioms do not serve all tasks equally!</li>
<li class="fragment">Challenge: recast tasks from domain-specific vocabulary to abstract forms</li>
</ul>
<li class="fragment">Most possibilities ineffective</li>
<ul>
<li class="fragment">Validation is necessary, but tricky</li>
<li class="fragment">Increases chance of finding good solutions if you understand full space of possibilities</li>
</ul>
</ul>
</section>
<section>
<h3>What counts as effective?</h3>
<ul>
<li class="fragment">Novel: enable entirely new kinds of analysis</li>
<li class="fragment">Faster: speed up existing workflows</li>
</ul>
</section>
<section>
<h2>Resource limitations</h2>
<p>Vis designers must take into account three very different kinds of resource limitations: those of computers, of humans, and of displays.</p>
</section>
<section>
<h2>Computational limits</h2>
<ul>
<li class="fragment">Processing time</li>
<li class="fragment">System memory</li>
</ul>
</section>
<section>
<h2>Human limits</h2>
<ul>
<li class="fragment">Human attention</li>
<li class="fragment">Memory</li>
<li class="fragment">Retention</li>
</ul>
</section>
<section>
<h2>Display limits</h2>
<ul>
<li class="fragment">Pixels are precious resource, the most constrained resource</li>
<li class="fragment">Information density: ratio of space used to encode information vs. unused white space</li>
<ul>
<li class="fragment">Trade-off between clutter and wasting space, find sweet spot between dense and sparse</li>
</ul>
</ul>
</section>
<section>
<div><img src="../shared_images/UC_Berkeley_wordmark_cal_gold.png" alt="University Of California at Berkeley logo"></div>
</section>
</section>
<section id="whyVisualize">
<section>
<h1>Why should we visualize?</h1>
</section>
<section>
<h3>The purpose of visualization is <strong>insight</strong>, not pictures</h3>
<div class="portrait"><a class="right" href="https://medium.com/multiple-views-visualization-research-explained/the-purpose-of-visualization-is-insight-not-pictures-an-interview-with-visualization-pioneer-ben-beb15b2d8e9b" target="_blank" rel="noopener noreferrer">
<div><img style="width:auto" src="../shared_images/ben_pic_fp_cropped.jpg" alt="Ben Shneiderman photo"></div>
<div class="small">Ben Shneiderman</div></a></div>
</section>
<section>
<h3>The purpose of data science is <strong>insight</strong>, not (just) models</h3>
<div class="portrait"><a class="right"><img style="width:auto" src="../shared_images/foto_JohnGuerra_2019.jpg" alt="My photo"><br><span class="small">John Alexis Guerra Gómez</span></a></div>
</section>
<section class="full">
<h3>Anscombe's quartet</h3><table class="anscombeTable">
<tbody>
<tr>
<th colspan="2">I</th>
<th colspan="2">II</th>
<th colspan="2">III</th>
<th colspan="2">IV</th>
</tr>
<tr>
<td>x</td>
<td>y</td>
<td>x</td>
<td>y</td>
<td>x</td>
<td>y</td>
<td>x</td>
<td>y</td>
</tr>
<tr>
<td>10.0</td>
<td>8.04</td>
<td>10.0</td>
<td>9.14</td>
<td>10.0</td>
<td>7.46</td>
<td>8.0</td>
<td>6.58</td>
</tr>
<tr>
<td>8.0</td>
<td>6.95</td>
<td>8.0</td>
<td>8.14</td>
<td>8.0</td>
<td>6.77</td>
<td>8.0</td>
<td>5.76</td>
</tr>
<tr>
<td>13.0</td>
<td>7.58</td>
<td>13.0</td>
<td>8.74</td>
<td>13.0</td>
<td>12.74</td>
<td>8.0</td>
<td>7.71</td>
</tr>
<tr>
<td>9.0</td>
<td>8.81</td>
<td>9.0</td>
<td>8.77</td>
<td>9.0</td>
<td>7.11</td>
<td>8.0</td>
<td>8.84</td>
</tr>
<tr>
<td>11.0</td>
<td>8.33</td>
<td>11.0</td>
<td>9.26</td>
<td>11.0</td>
<td>7.81</td>
<td>8.0</td>
<td>8.47</td>
</tr>
<tr>
<td>14.0</td>
<td>9.96</td>
<td>14.0</td>
<td>8.10</td>
<td>14.0</td>
<td>8.84</td>
<td>8.0</td>
<td>7.04</td>
</tr>
<tr>
<td>6.0</td>
<td>7.24</td>
<td>6.0</td>
<td>6.13</td>
<td>6.0</td>
<td>6.08</td>
<td>8.0</td>
<td>5.25</td>
</tr>
<tr>
<td>4.0</td>
<td>4.26</td>
<td>4.0</td>
<td>3.10</td>
<td>4.0</td>
<td>5.39</td>
<td>19.0</td>
<td>12.50</td>
</tr>
<tr>
<td>12.0</td>
<td>10.84</td>
<td>12.0</td>
<td>9.13</td>
<td>12.0</td>
<td>8.15</td>
<td>8.0</td>
<td>5.56</td>
</tr>
<tr>
<td>7.0</td>
<td>4.82</td>
<td>7.0</td>
<td>7.26</td>
<td>7.0</td>
<td>6.42</td>
<td>8.0</td>
<td>7.91</td>
</tr>
<tr>
<td>5.0</td>
<td>5.68</td>
<td>5.0</td>
<td>4.74</td>
<td>5.0</td>
<td>5.73</td>
<td>8.0</td>
<td>6.89</td>
</tr>
</tbody>
</table>
<span class="fragment anscombeResult" style="margin-left:20px">
<table>
<tbody><tr>
<th>Property</th>
<th>Value</th>
</tr>
<tr>
<td>Mean of <i>x</i></td>
<td>9</td>
</tr>
<tr>
<td>Variance</a> of <i>x</i></td>
<td>11</td>
</tr>
<tr>
<td>Mean of <i>y</i></td>
<td>7.50</td>
</tr>
<tr>
<td>Variance of <i>y</i></td>
<td>4.125</td>
</tr>
<tr>
<td>Correlation between <i>x</i> and <i>y</i></td>
<td>0.816</td>
</tr>
<tr>
<td>Linear regression</td>
<td><i>y</i> = 3.00 + 0.500<i>x</i></td>
</tr>
<tr>
<td>Coefficient of determination of the linear regression</td>
<td>0.67</td>
</tr>
</tbody></table>
</span>
</section>
<section>
<h2>Anscombe's visualized</h2>
<div>
<div id="observablehq-c877aaaf"></div>
<script type="module">
import {Runtime, Inspector} from "https://cdn.jsdelivr.net/npm/@observablehq/runtime@4/dist/runtime.js";
import define from "https://api.observablehq.com/@john-guerra/anscombes-quartet.js?v=3";
const inspect = Inspector.into("#observablehq-c877aaaf");
(new Runtime).module(define, name => name === "anscombe" ? inspect() : undefined);
</script>
</div>
</section>
<section>
<h3>More examples, same statistics</h3><img class="r-stretch" src="../shared_images/datasaurus-dozen.png">
<div><a class="tiny" href="https://dabblingwithdata.wordpress.com/2017/05/03/the-datasaurus-a-monstrous-anscombe-for-the-21st-century/">https://dabblingwithdata.wordpress.com/2017/05/03/the-datasaurus-a-monstrous-anscombe-for-the-21st-century/</a></div>
</section>
<section>
<h3>Datasaurus!</h3><img class="r-stretch" src="../shared_images/datasaurus-main.png">
<div><a class="tiny" href="https://dabblingwithdata.wordpress.com/2017/05/03/the-datasaurus-a-monstrous-anscombe-for-the-21st-century/">https://dabblingwithdata.wordpress.com/2017/05/03/the-datasaurus-a-monstrous-anscombe-for-the-21st-century/</a></div>
</section>
<section>
<div><img src="../shared_images/UC_Berkeley_wordmark_cal_gold.png" alt="University Of California at Berkeley logo"></div>
</section>
</section>
<section id="visualAnalytics">
<section>
<h1>Visual Analytics</h1>
<div>How do people do data science?</div>
</section>
<section data-background-image="../shared_images/DS_to_VA_01.svg" alt="Data Science to Visual Analytics" data-background-size="contain"></section>
<section data-background-image="../shared_images/DS_to_VA_02.svg" alt="Data Science to Visual Analytics" data-background-size="contain"></section>
<section data-background-image="../shared_images/DS_to_VA_03.svg" alt="Data Science to Visual Analytics" data-background-size="contain"></section>
<section data-background-image="../shared_images/DS_to_VA_04.svg" alt="Data Science to Visual Analytics" data-background-size="contain"></section>
<section data-background-image="../shared_images/DS_to_VA_05.svg" alt="Data Science to Visual Analytics" data-background-size="contain"></section>
<section data-background-image="../shared_images/DS_to_VA_06.svg" alt="Data Science to Visual Analytics" data-background-size="contain"></section>
<section>
<table id="comparisonTable">
<tr>
<td class="fragment">
<h2>Traditional</h2>
<ul>
<li>Query for known patterns</li>
<li>Display results using traditional techniques</li>
</ul><br><strong>Pros:</strong><br>
<ul>
<li>Many solutions</li>
<li>Easier to implement</li>
</ul><br><strong>Cons:</strong><br>
<ul>
<li>Can’t search for the unexpected</li>
</ul>
</td>
<td class="fragment">
<h2>Data Mining/ML</h2>
<ul>
<li>Based on statistics</li>
<li>Black box approach</li>
<li>Output outliers and correlations</li>
<li> Human out of the loop</li>
</ul><br><strong>Pros:</strong><br>
<ul>
<li> Scalable</li>
</ul><br><strong>Cons:</strong>
<ul>
<li> Analysts have to make sense of the results</li>
<li> Makes assumptions on the data</li>
</ul>
</td>
<td class="fragment">
<h2>InfoVis</h2>
<ul>
<li> Visual interactive interfaces</li>
<li> Human in the loop</li>
</ul><br><strong>Pros:</strong><br>
<ul>
<li> Visual bandwidth is enormous</li>
<li> Experts decided what to search for</li>
<li> Identify unknown patterns and errors in the data</li>
</ul><br><strong>Cons</strong><br>
<ul>
<li>Scalability can be an issue</li>
</ul>
</td>
</tr>
</table>
</section>
<section id="insight">
<h2>In Infovis, we look for insights</h2>
<ul>
<li class="fragment">Deep understanding</li>
<li class="fragment">Meaningful</li>
<li class="fragment">Non-obvious</li>
<li class="fragment">Actionable</li>
<li class="fragment">Based on data</li>
</ul>
</section>
<section>
<h2>An insight is:</h2>
<ul>
<li class="fragment">Something that the <strong>user</strong> can learn from the <strong>data</strong> using the <strong>infovis</strong></li>
<li class="fragment">Which she didn't know/expect</li>
<li class="fragment">Also, is useful/needed for her</li>
<li class="fragment">Moreover, she didn't know of it</li>
<li class="fragment">And that she can leverage</li>
</ul>
</section>
<section>
<div><img src="../shared_images/UC_Berkeley_wordmark_cal_gold.png" alt="University Of California at Berkeley logo"></div>
</section>
</section>
<section id="insights">
<section id="insightsExample">
<h1>Insights</h1>
</section>
<section id="InsightTweetometro">
<h2>Tweetometro</h2>
<p>Task: Twitter behavior during presidential elections</p>
<p>User: me</p>
</section>
<section>
<iframe class="r-stretch" src="http://old.tweetometro.co" alt="../shared_images/tweetometro.png"></iframe><a href="http://old.tweetometro.co">http://old.tweetometro.co</a>
</section>
<section>
<h2>Normal tweets</h2><img class="r-stretch" src="../shared_images/all_tweets_May_25_2014.png" alt="All tweets collected, line chart of number of retweets by time for the first two hours">
</section>
<section>
<h2>Weird tweets?</h2><img class="r-stretch" src="../shared_images/suspicious_tweets_May_25_2014.png" alt="Suspicious tweets, that increased to many retweets in one second">
</section>
<section>
<h2>Creation dates</h2><img class="r-stretch" src="../shared_images/user_creation_date_May_25_2014.png" al="User creation dates, most of them belong to the same week">
</section>
<section>
<h2>Number of followers</h2><img class="r-stretch" src="../shared_images/num_followers_May_25_2014.png" alt="Number of followers">
</section>
<section class="full"><span class="r-stretch">
<div class='tableauPlaceholder' id='viz1593024408194' style='position: relative'><noscript><a href='#'><img alt=' ' src='https://public.tableau.com/static/images/An/AnlisisPosiblesRobotsEleccionesColombiaMay25/AnlisisEleccionesPresidencialesColombia/1_rss.png' style='border: none' /></a></noscript><object class='tableauViz' style='display:none;'><param name='host_url' value='https%3A%2F%2Fpublic.tableau.com%2F' /> <param name='embed_code_version' value='3' /> <param name='site_root' value='' /><param name='name' value='AnlisisPosiblesRobotsEleccionesColombiaMay25/AnlisisEleccionesPresidencialesColombia' /><param name='tabs' value='no' /><param name='toolbar' value='yes' /><param name='static_image' value='https://public.tableau.com/static/images/An/AnlisisPosiblesRobotsEleccionesColombiaMay25/AnlisisEleccionesPresidencialesColombia/1.png' /> <param name='animate_transition' value='yes' /><param name='display_static_image' value='yes' /><param name='display_spinner' value='yes' /><param name='display_overlay' value='yes' /><param name='display_count' value='yes' /><param name='language' value='en' /></object></div>
<script type='text/javascript'>
var divElement = document.getElementById("viz1593024408194");
var vizElement = divElement.getElementsByTagName("object")[0];
vizElement.style.minWidth = "960px";
vizElement.style.maxWidth = "100%";
vizElement.style.minHeight = "587px";
vizElement.style.maxHeight = divElement.offsetWidth * 0.75 + "px";
var scriptElement = document.createElement("script");
scriptElement.src = "https://public.tableau.com/javascripts/api/viz_v1.js";
vizElement.parentNode.insertBefore(scriptElement, vizElement);
</script>
</span><a class="tiny" href="https://public.tableau.com/profile/john.alexis.guerra.g.mez#!/vizhome/AnlisisPosiblesRobotsEleccionesColombiaMay25/AnlisisEleccionesPresidencialesColombia">Dashboard link</a></section>
<section id="InsightCars">
<h2>What car to buy?</h2>
<p>User: person buying a car</p>
<p>Task: What's the best car to buy?</p>
<p>Data: all cars on sale</p>
</section>
<section>
<h2>Normal procedure</h2>
<p>Ask friends and family</p>
</section>
<section id="Renault4" data-background="../shared_images/renault4.jpg"></section>
<section id="Renault4Pimped" data-background="../shared_images/renault4_pimped.jpg"></section>
<section id="Renault4Crashed" data-background="../shared_images/renault4_crashed.jpg"></section>
<section>
<h2>Problem</h2>
<p>That's inferring statistics from a sample n = 1</p>
</section>
<section>
<h2>Better approach</h2>
<p>Data-based decisions</p>
</section>
<section><img src="../shared_images/tucarro.png"><a href="https://tucarro.com">https://tucarro.com</a></section>
<section data-background-iframe="https://johnguerra.co/viz/carrosUsados/todosPuntos.html"></section>
<section data-background-iframe="https://johnguerra.co/viz/carrosUsados/depreciacionMarcas.html"></section>
<section data-background-iframe="https://johnguerra.co/viz/carrosUsados/depreciacionesCarros.html"></section>
<section>
<h2>Jeep Willys</h2>
<div class="flex">
<ul class="half small">
<li>Colombia bought many Jeeps after the war</li>
<li>They are the a sort of mountain taxi</li>
<li>There is a trend to pimp them up</li>
</ul>
<div class="half"><img src="../shared_images/Willys_small.jpg" alt="Colombian Jeep Willys. Foto by John Alexis Guerra Gómez"></div>
</div>
</section>
<section>
<div><img src="../shared_images/UC_Berkeley_wordmark_cal_gold.png" alt="University Of California at Berkeley logo"></div>
</section>
</section>
<section id="problemAbstraction">
<section>
<h1>Problem Abstraction</h1>
</section>
<section>
<h2 class="demo">What/Why/How</h2>
<div class="flex">
<div class="twothirds small line-compressed">
<ul>
<li class="fragment"><strong style="color:#ce4113">What</strong> is visualized?
<ul>
<li><strong>data </strong> abstraction</li>
</ul>
</li>
<li class="fragment"><strong style="color:#e8b32d">Why</strong> is the user looking at it?
<ul>
<li><strong>task </strong> abstraction</li>
</ul>
</li>
<li class="fragment"><strong style="color:#6ada6f">How</strong> is visualized?
<ul>
<li><strong>idiom </strong> visual encoding and interaction</li>
</ul>
</li>
</ul><br><span class="small">
<div class="left-align fragment">Abstract language avoids domain specific pitfals</div>
<div class="left-align fragment">What/Why/How to navigate systematically the design space</div></span>
</div>
<div class="third"><img style="max-height:300px" src="../shared_images/what_why_how.png"></div>
</div>
</section>
<section data-background-size="contain" data-background="../shared_images/what_sheet.png" id="what"></section>
<section data-background-size="contain" data-background="../shared_images/why_sheet.png" id="why"></section>
<section data-background-size="contain" data-background="../shared_images/how_sheet.png" id="how"></section>
<section>
<h2>Abstraction Example</h2>
</section>
<section>
<h2 class="demo">SpaceTree</h2>
<iframe class="r-stretch" src="https://www.cs.umd.edu/hcil/spacetree/"></iframe><a class="tiny" href="https://www.cs.umd.edu/hcil/spacetree/">http://www.cs.umd.edu/hcil/spacetree/</a>
</section>
<section>
<h2 class="demo">SpaceTree</h2><span>
<iframe width="640" height="480" src="https://www.youtube.com/embed/-vXRJ_Ry_yE?rel=0" frameborder="0" allowfullscreen></iframe>
</span>
</section>
<section>
<h2 class="demo">TreeJuxtaposer</h2>
<iframe class="r-stretch" src="https://www.cs.ubc.ca/~tmm/papers/tj/"></iframe><a class="tiny" href="https://www.cs.ubc.ca/~tmm/papers/tj/">https://www.cs.ubc.ca/~tmm/papers/tj/</a>
</section>
<section>
<h2 class="demo">TreeJuxtaposer</h2><span>
<iframe width="640" height="480" src="https://www.youtube.com/embed/GdaPj8a9QEo?rel=0" frameborder="0" allowfullscreen></iframe>
</span>
</section>
<section data-background-size="contain" data-background="../shared_images/vad_book_alldiagrams/tamara_course14_session1-24.png"></section>
<section data-background-size="contain" data-background="../shared_images/vad_book_alldiagrams/tamara_course14_session1-25.png"></section>
<section data-background-size="contain" data-background="../shared_images/vad_book_alldiagrams/tamara_course14_session1-26.png"></section>
<section>
<div><img src="../shared_images/UC_Berkeley_wordmark_cal_gold.png" alt="University Of California at Berkeley logo"></div>
</section>
</section>
<section id="abstractionExamples">
<section>
<h1>Abstraction in Action</h1>
</section>
<section>
<h3>The what/why/how framework allows us to make productive comparisons of different vis idioms. A couple examples:</h3>
<ul>
<li>Pie chart vs bar chart</li>
<li>Word clouds vs word shift graphs</li>
</ul>
</section>
<section>
<h3>The classic: pie chart vs bar chart.</h3>
<p>You've seen both. Simply put, the question is ill-formed. No single correct answer! We need the framework:</p>
<ul>
<li>What: <strong><span class="fragment">tabular data</span></strong>.</li>
<li>Idiom: <strong><span class="fragment">bar or pie chart</span></strong>.</li>
<ul class="fragment">
<li class="framgment">How (encode bar chart): line marks, value channel aligned vertical position, key attribute horizontal position.</li>
<li class="framgment">How (encode bar chart): area marks (wedges), value channel angle.</li>
</ul>
<li class="fragment"><strong>Why</strong>: Identify one, the largest group.</li>
<li class="fragment"><strong>Why</strong>: Identify one, the 2nd/3rd/4th largest group (rank them).</li>
<li class="fragment"><strong>Why</strong>: Compare value.</li>
<li class="fragment"><strong>Why</strong>: Identify distribution of parts of the whole, is a group 1/2, 1/3, 1/4 of whole?.</li>
</ul>
</section>
<section>
<div><img src="../shared_images/1280px-Piecharts.png" alt="Pie vs bar chart."></div>
<div><a class="tiny" href="https://upload.wikimedia.org/wikipedia/commons/b/b4/Piecharts.svg">image courtesy of WikiPedia</a></div>
</section>
<section>
<h3>Word clouds vs word shift graph</h3>
<p>You've seen a word cloud, maybe not a word shift graph, let's look at one first.</p>
</section>
<section data-background-iframe="http://hedonometer.org/timeseries/en_all/?from=2015-07-16&to=2017-01-12&date=2016-11-09"></section>
<section>
<h3>The same data on a word cloud</h3><img src="../shared_images/word_cloud.png" alt="Word cloud.">
</section>
<section>
<ul>
<li>What: <strong><span class="fragment">Weighted average measure over words</span></strong>.</li>
<li>Idiom: <strong><span class="fragment">Word cloud vs word shift graph</span></strong>.</li>
<ul class="fragment">
<li class="framgment">How (encode word cloud): mark text, value channel size, spatial position random, color random.</li>
<li class="framgment">How (encode word shift graph): mark text, mark line, share value channel horizontal position, shared value ranked channel vertical position, line key type channel color.</li>
</ul>
<li class="fragment"><strong>Why</strong>: Enjoy.</li>
<li class="fragment"><strong>Why</strong>: Identify one, the largest word.</li>
<li class="fragment"><strong>Why</strong>: Identify one, the 2nd/3rd/4th largest word (rank them).</li>
<li class="fragment"><strong>Why</strong>: Compare distribution of words.</li>
<li class="fragment"><strong>Why</strong>: Summarize features.</li>
</ul>
</section>
<section>
<div><img src="../shared_images/UC_Berkeley_wordmark_cal_gold.png" alt="University Of California at Berkeley logo"></div>
</section>
</section>
<section id="practice">
<h1>Practice</h1>
</section>
<section id="vizToolSpace">
<section>
<h2>The visualization tool space</h2>
<div class="tiny">Partially based on<a href="https://courses.cs.washington.edu/courses/cse442/17au/lectures/CSE442-Tools.pdf"> slides from Jeff Heer</a></div>
</section>
<section class="full" data-transition="none" data-background-size="contain" data-background="../shared_images/Jeff/CSE442-Tools-8.png"><a class="page-watermark" href="https://courses.cs.washington.edu/courses/cse442/17au/lectures/CSE442-Tools.pdf">slides from Jeff Heer</a></section>
<section class="full" data-transition="none" data-background-size="contain" data-background="../shared_images/Jeff/CSE442-Tools-9.png"><a class="page-watermark" href="https://courses.cs.washington.edu/courses/cse442/17au/lectures/CSE442-Tools.pdf">slides from Jeff Heer</a></section>
<section class="full" data-transition="none" data-background-size="contain" data-background="../shared_images/Jeff/CSE442-Tools-19.png"><a class="page-watermark" href="https://courses.cs.washington.edu/courses/cse442/17au/lectures/CSE442-Tools.pdf">slides from Jeff Heer</a></section>
<section class="full" data-transition="none" data-background-size="contain" data-background="../shared_images/Jeff/CSE442-Tools-27.png"><a class="page-watermark" href="https://courses.cs.washington.edu/courses/cse442/17au/lectures/CSE442-Tools.pdf">slides from Jeff Heer</a></section>
<section class="full" data-transition="none" data-background-size="contain" data-background="../shared_images/Jeff/CSE442-Tools-34.png"><a class="page-watermark" href="https://courses.cs.washington.edu/courses/cse442/17au/lectures/CSE442-Tools.pdf">slides from Jeff Heer</a></section>
<section class="full" data-transition="none" data-background-size="contain" data-background="../shared_images/Jeff/CSE442-Tools-36.png"><a class="page-watermark" href="https://courses.cs.washington.edu/courses/cse442/17au/lectures/CSE442-Tools.pdf">slides from Jeff Heer</a></section>
<section class="full" data-transition="none" data-background-size="contain" data-background="../shared_images/Jeff/CSE442-Tools-37.png"><a class="page-watermark" href="https://courses.cs.washington.edu/courses/cse442/17au/lectures/CSE442-Tools.pdf">slides from Jeff Heer</a></section>
<section id="chooseTool">
<h2>Choose your tool</h2>
<div class="flex bigger"><strong class="quarter r-frame fragment">D3</strong><strong class="quarter r-frame fragment">Vega-lite</strong><strong class="quarter r-frame fragment">Altair</strong><strong class="quarter r-frame fragment">Tableau</strong></div>
</section>
<section>
<div><img src="../shared_images/UC_Berkeley_wordmark_cal_gold.png" alt="University Of California at Berkeley logo"></div>
</section>
</section>
<section id="webDevBasics">
<section>
<h1>Web Development Basics</h1><a class="tiny" href="https://observablehq.com/@observablehq/introduction-to-html">https://observablehq.com/@observablehq/introduction-to-html</a>
</section>
<section id="observable">
<h1>Introduction to Observable</h1>
<ul>
<li><a class="tiny" href="https://observablehq.com/@observablehq/five-minute-introduction">https://observablehq.com/@observablehq/five-minute-introduction</a></li>
<li><a class="tiny" href="https://observablehq.com/@observablehq/observables-not-javascript">https://observablehq.com/@observablehq/observables-not-javascript</a></li>
<li><a class="tiny" href="https://observablehq.com/@observablehq/user-manual">https://observablehq.com/@observablehq/user-manual</a></li>
</ul>
</section>
</section>
<section id="d3Intro">
<section>
<h1 class="demo">Introduction to D3</h1><a class="tiny" href="https://observablehq.com/@d3/learn-d3">https://observablehq.com/@d3/learn-d3</a>
</section>
</section>
<section id="vegaLiteIntro">
<section>
<h1>Introduction to Vega-lite</h1><a class="tiny" href="https://observablehq.com/@uwdata/introduction-to-vega-lite">https://observablehq.com/@uwdata/introduction-to-vega-lite</a>
</section>
</section>
<section id="altairIntro">
<section>
<h1>Introduction to Python and Altair</h1><a class="tiny" href="https://altair-viz.github.io/getting_started/overview.html">https://altair-viz.github.io/getting_started/overview.html</a>
</section>
<section>
<h1>Interview Jake VanderPlas, Part 1</h1>
</section>
</section>
<section id="tableauIntro">
<section>
<h1>Introduction to Tableau</h1><a class="tiny" href="https://www.tableau.com/learn/get-started/creator">https://www.tableau.com/learn/get-started/creator</a>
</section>
</section>
<section id="review">
<section>
<h1>What we learned</h1>
<ul>
<li class="fragment">Infovis definition</li>
<li class="fragment">Why should we visualize?</li>
<li class="fragment">What are insights?</li>
<li class="fragment">Problem abstraction</li>
<li class="fragment">Visualization tools landscape</li>
</ul>
</section>
</section>
</div>
</div>
<script src="../js/reveal.js"></script>
<script src="../plugin/zoom/zoom.js"></script>
<script src="../plugin/notes/notes.js"></script>
<script src="../plugin/search/search.js"></script>
<script src="../plugin/markdown/markdown.js"></script>
<script src="../plugin/highlight/highlight.js"></script>
<script>
Reveal.initialize({
controls: true,
progress: true,
history: true,
center: true,
hash: true,
//- transition: "convex",
//- width: "90%",
//- height: "100%",
plugins: [ RevealZoom, RevealNotes, RevealSearch, RevealMarkdown, RevealHighlight ]
});
</script>
<script>
(function(i,s,o,g,r,a,m){i["GoogleAnalyticsObject"]=r;i[r]=i[r]||function(){
(i[r].q=i[r].q||[]).push(arguments)},i[r].l=1*new Date();a=s.createElement(o),
m=s.getElementsByTagName(o)[0];a.async=1;a.src=g;m.parentNode.insertBefore(a,m)
})(window,document,"script","https://www.google-analytics.com/analytics.js","ga");
ga("create", "UA-72531610-1", "auto");
ga("send", "pageview");
</script>
</body>
</html>