-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathconfig.yaml
103 lines (91 loc) · 3.09 KB
/
config.yaml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
# Model parameters
model:
latent_dim: 32
base_channels: 64
num_layers: 4
use_resnet_feature: False
use_mlgffn: False
# Training parameters
profiling:
profile_step: 10
training:
load_checkpoint: True # Set this to true when you want to load from a checkpoint
checkpoint_path: './checkpoints/checkpoint.pth'
use_eye_loss: False
use_subsampling: False # saves ram? https://github.com/johndpope/MegaPortrait-hack/issues/41
initial_video_repeat: 1
final_video_repeat: 1
use_ema: False
use_r1_reg: False
batch_size: 2 # a100 - 40gb
num_epochs: 1000
save_steps: 1000
learning_rate_g: 1.0e-6 # Reduced learning rate for generator
initial_learning_rate_d: 1.0e-6 # Set a lower initial learning rate for discriminator
# learning_rate_g: 5.0e-4 # Increased learning rate for generator
# learning_rate_d: 5.0e-4 # Increased learning rate for discriminator
ema_decay: 0.999
style_mixing_prob: 0.0
noise_magnitude: 0.01
final_noise_magnitude: 0.001
gradient_accumulation_steps: 1
lambda_pixel: 10 # in paper lambda-pixel = 10 Adjust this value as needed
lambda_perceptual: 20 # lambda perceptual = 10
lambda_eye: 0
lambda_adv: 1 # adverserial = 1
lambda_gp: 10 # Gradient penalty coefficient
lambda_mse: 1.0
n_critic: 1 # Number of discriminator updates per generator update
clip_grad: True
clip_grad_norm: 1.0 # Maximum norm for gradient clipping
r1_gamma: 10
r1_interval: 16
label_smoothing: 0.1
min_learning_rate_d: 1.0e-6
max_learning_rate_d: 1.0e-3
d_lr_adjust_frequency: 100 # Adjust D learning rate every 100 steps
d_lr_adjust_factor: 2.0 # Factor to increase/decrease D learning rate
target_d_loss_ratio: 0.6 # Target ratio of D loss to G loss
every_xref_frames: 16
use_many_xrefs: False
scales: [1, 0.5, 0.25, 0.125]
enable_xformers_memory_efficient_attention: True
# Dataset parameters
dataset:
# celeb-hq torrent https://github.com/johndpope/MegaPortrait-hack/tree/main/junk
root_dir: "./data"
# root_dir: "/media/oem/12TB/Downloads/CelebV-HQ/celebvhq/35666/M2Ohb0FAaJU_1" # for overfitting M2Ohb0FAaJU_1.mp4 use https://github.com/johndpope/MegaPortrait-hack/tree/main/junk
json_file: './data/overfit.json' # Selena Gomez
extracted_frames: "./celebvhq/35666/images/"
# json_file: './data/celebvhq_info.json' # 35k
# Checkpointing
checkpoints:
dir: "./checkpoints"
interval: 10
# Logging and visualization
logging:
log_every: 250
sample_every: 100
sample_size: 2 # for images on wandb
output_dir: "./samples"
visualize_every: 100 # Visualize latent tokens every 100 batches
print_model_details: False
# Accelerator settings
accelerator:
mixed_precision: "no" # Options: "no", "fp16", "bf16"
cpu: false
num_processes: 1 # Set to more than 1 for multi-GPU training
# Discriminator parameters
discriminator:
ndf: 64 # Number of filters in the first conv layer
# Optimizer parameters
optimizer:
beta1: 0.5
beta2: 0.999
# Loss function
loss:
type: "hinge" # Changed to Wasserstein loss for WGAN-GP
weights:
perceptual: [10, 10, 10, 10, 10]
equivariance_shift: 10
equivariance_affine: 10