Skip to content

Commit

Permalink
add pytorch2onnx part (open-mmlab#12)
Browse files Browse the repository at this point in the history
* add pytorch2onnx part

* Update according to the latest mmcv

* add docstring

* update docs

* update docs

Co-authored-by: Jiarui XU <xvjiarui0826@gmail.com>
  • Loading branch information
2 people authored and johnzja committed Aug 19, 2020
1 parent eabbccf commit a81b1bb
Show file tree
Hide file tree
Showing 4 changed files with 227 additions and 9 deletions.
15 changes: 15 additions & 0 deletions docs/getting_started.md
Original file line number Diff line number Diff line change
Expand Up @@ -332,3 +332,18 @@ python tools/publish_model.py work_dirs/pspnet/latest.pth psp_r50_hszhao_200ep.p
```
The final output filename will be `psp_r50_512x1024_40ki_cityscapes-{hash id}.pth`.
### Convert to ONNX (experimental)
We provide a script to convert model to [ONNX](https://github.com/onnx/onnx) format. The converted model could be visualized by tools like [Netron](https://github.com/lutzroeder/netron). Besides, we also support comparing the output results between Pytorch and ONNX model.
```shell
python tools/pytorch2onnx.py ${CONFIG_FILE} --checkpoint ${CHECKPOINT_FILE} --output_file ${ONNX_FILE} [--shape ${INPUT_SHAPE} --verify]
```
**Note**: This tool is still experimental. Some customized operators are not supported for now.
## Tutorials
Currently, we provide four tutorials for users to [add new dataset](tutorials/new_dataset.md), [design data pipeline](tutorials/data_pipeline.md) and [add new modules](tutorials/new_modules.md), [use training tricks](tutorials/training_tricks.md).
We also provide a full description about the [config system](config.md).
21 changes: 13 additions & 8 deletions mmseg/models/segmentors/encoder_decoder.py
Original file line number Diff line number Diff line change
@@ -1,3 +1,4 @@
import torch
import torch.nn as nn
import torch.nn.functional as F

Expand Down Expand Up @@ -171,6 +172,8 @@ def slide_inference(self, img, img_meta, rescale):
h_stride, w_stride = self.test_cfg.stride
h_crop, w_crop = self.test_cfg.crop_size
batch_size, _, h_img, w_img = img.size()
assert h_crop <= h_img and w_crop <= w_img, (
'crop size should not greater than image size')
num_classes = self.num_classes
h_grids = max(h_img - h_crop + h_stride - 1, 0) // h_stride + 1
w_grids = max(w_img - w_crop + w_stride - 1, 0) // w_stride + 1
Expand All @@ -185,14 +188,15 @@ def slide_inference(self, img, img_meta, rescale):
y1 = max(y2 - h_crop, 0)
x1 = max(x2 - w_crop, 0)
crop_img = img[:, :, y1:y2, x1:x2]
pad_img = crop_img.new_zeros(
(crop_img.size(0), crop_img.size(1), h_crop, w_crop))
pad_img[:, :, :y2 - y1, :x2 - x1] = crop_img
pad_seg_logit = self.encode_decode(pad_img, img_meta)
preds[:, :, y1:y2,
x1:x2] += pad_seg_logit[:, :, :y2 - y1, :x2 - x1]
crop_seg_logit = self.encode_decode(crop_img, img_meta)
preds += F.pad(crop_seg_logit,
(int(x1), int(preds.shape[3] - x2), int(y1),
int(preds.shape[2] - y2)))

count_mat[:, :, y1:y2, x1:x2] += 1
assert (count_mat == 0).sum() == 0
# We want to regard count_mat as a constant while exporting to ONNX
count_mat = torch.from_numpy(count_mat.detach().numpy())
preds = preds / count_mat
if rescale:
preds = resize(
Expand All @@ -201,7 +205,6 @@ def slide_inference(self, img, img_meta, rescale):
mode='bilinear',
align_corners=self.align_corners,
warning=False)

return preds

def whole_inference(self, img, img_meta, rescale):
Expand Down Expand Up @@ -243,8 +246,8 @@ def inference(self, img, img_meta, rescale):
seg_logit = self.whole_inference(img, img_meta, rescale)
output = F.softmax(seg_logit, dim=1)
flip = img_meta[0]['flip']
flip_direction = img_meta[0]['flip_direction']
if flip:
flip_direction = img_meta[0]['flip_direction']
assert flip_direction in ['horizontal', 'vertical']
if flip_direction == 'horizontal':
output = output.flip(dims=(3, ))
Expand All @@ -257,6 +260,8 @@ def simple_test(self, img, img_meta, rescale=True):
"""Simple test with single image."""
seg_logit = self.inference(img, img_meta, rescale)
seg_pred = seg_logit.argmax(dim=1)
if torch.onnx.is_in_onnx_export():
return seg_pred
seg_pred = seg_pred.cpu().numpy()
# unravel batch dim
seg_pred = list(seg_pred)
Expand Down
2 changes: 1 addition & 1 deletion setup.cfg
Original file line number Diff line number Diff line change
Expand Up @@ -8,6 +8,6 @@ line_length = 79
multi_line_output = 0
known_standard_library = setuptools
known_first_party = mmseg
known_third_party = PIL,cityscapesscripts,cv2,matplotlib,mmcv,numpy,pytablewriter,pytest,scipy,torch,torchvision
known_third_party = PIL,cityscapesscripts,cv2,matplotlib,mmcv,numpy,onnxruntime,pytablewriter,pytest,scipy,torch,torchvision
no_lines_before = STDLIB,LOCALFOLDER
default_section = THIRDPARTY
198 changes: 198 additions & 0 deletions tools/pytorch2onnx.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,198 @@
import argparse
from functools import partial

import mmcv
import numpy as np
import onnxruntime as rt
import torch
import torch._C
import torch.serialization
from mmcv.onnx import register_extra_symbolics
from mmcv.runner import load_checkpoint

from mmseg.models import build_segmentor

torch.manual_seed(3)


def _convert_batchnorm(module):
module_output = module
if isinstance(module, torch.nn.SyncBatchNorm):
module_output = torch.nn.BatchNorm2d(module.num_features, module.eps,
module.momentum, module.affine,
module.track_running_stats)
if module.affine:
module_output.weight.data = module.weight.data.clone().detach()
module_output.bias.data = module.bias.data.clone().detach()
# keep requires_grad unchanged
module_output.weight.requires_grad = module.weight.requires_grad
module_output.bias.requires_grad = module.bias.requires_grad
module_output.running_mean = module.running_mean
module_output.running_var = module.running_var
module_output.num_batches_tracked = module.num_batches_tracked
for name, child in module.named_children():
module_output.add_module(name, _convert_batchnorm(child))
del module
return module_output


def _demo_mm_inputs(input_shape, num_classes):
"""Create a superset of inputs needed to run test or train batches.
Args:
input_shape (tuple):
input batch dimensions
num_classes (int):
number of semantic classes
"""
(N, C, H, W) = input_shape
rng = np.random.RandomState(0)
imgs = rng.rand(*input_shape)
segs = rng.randint(
low=0, high=num_classes - 1, size=(N, 1, H, W)).astype(np.uint8)
img_metas = [{
'img_shape': (H, W, C),
'ori_shape': (H, W, C),
'pad_shape': (H, W, C),
'filename': '<demo>.png',
'scale_factor': 1.0,
'flip': False,
} for _ in range(N)]
mm_inputs = {
'imgs': torch.FloatTensor(imgs).requires_grad_(True),
'img_metas': img_metas,
'gt_semantic_seg': torch.LongTensor(segs)
}
return mm_inputs


def pytorch2onnx(model,
input_shape,
opset_version=11,
show=False,
output_file='tmp.onnx',
verify=False):
"""Export Pytorch model to ONNX model and verify the outputs are same
between Pytorch and ONNX.
Args:
model (nn.Module): Pytorch model we want to export.
input_shape (tuple): Use this input shape to construct
the corresponding dummy input and execute the model.
opset_version (int): The onnx op version. Default: 11.
show (bool): Whether print the computation graph. Default: False.
output_file (string): The path to where we store the output ONNX model.
Default: `tmp.onnx`.
verify (bool): Whether compare the outputs between Pytorch and ONNX.
Default: False.
"""
model.cpu().eval()

num_classes = model.decode_head.num_classes

mm_inputs = _demo_mm_inputs(input_shape, num_classes)

imgs = mm_inputs.pop('imgs')
img_metas = mm_inputs.pop('img_metas')

img_list = [img[None, :] for img in imgs]
img_meta_list = [[img_meta] for img_meta in img_metas]

# replace original forward function
origin_forward = model.forward
model.forward = partial(
model.forward, img_metas=img_meta_list, return_loss=False)

register_extra_symbolics(opset_version)
with torch.no_grad():
torch.onnx.export(
model, (img_list, ),
output_file,
export_params=True,
keep_initializers_as_inputs=True,
verbose=show,
opset_version=opset_version)
print(f'Successfully exported ONNX model: {output_file}')
model.forward = origin_forward

if verify:
# check by onnx
import onnx
onnx_model = onnx.load(output_file)
onnx.checker.check_model(onnx_model)

# check the numerical value
# get pytorch output
pytorch_result = model(img_list, img_meta_list, return_loss=False)[0]

# get onnx output
input_all = [node.name for node in onnx_model.graph.input]
input_initializer = [
node.name for node in onnx_model.graph.initializer
]
net_feed_input = list(set(input_all) - set(input_initializer))
assert (len(net_feed_input) == 1)
sess = rt.InferenceSession(output_file)
onnx_result = sess.run(
None, {net_feed_input[0]: img_list[0].detach().numpy()})[0]
if not np.allclose(pytorch_result, onnx_result):
raise ValueError(
'The outputs are different between Pytorch and ONNX')
print('The outputs are same between Pytorch and ONNX')


def parse_args():
parser = argparse.ArgumentParser(description='Convert MMDet to ONNX')
parser.add_argument('config', help='test config file path')
parser.add_argument('--checkpoint', help='checkpoint file', default=None)
parser.add_argument('--show', action='store_true', help='show onnx graph')
parser.add_argument(
'--verify', action='store_true', help='verify the onnx model')
parser.add_argument('--output-file', type=str, default='tmp.onnx')
parser.add_argument('--opset-version', type=int, default=11)
parser.add_argument(
'--shape',
type=int,
nargs='+',
default=[256, 256],
help='input image size')
args = parser.parse_args()
return args


if __name__ == '__main__':
args = parse_args()

if len(args.shape) == 1:
input_shape = (1, 3, args.shape[0], args.shape[0])
elif len(args.shape) == 2:
input_shape = (
1,
3,
) + tuple(args.shape)
else:
raise ValueError('invalid input shape')

cfg = mmcv.Config.fromfile(args.config)
cfg.model.pretrained = None

# build the model and load checkpoint
segmentor = build_segmentor(
cfg.model, train_cfg=None, test_cfg=cfg.test_cfg)
# convert SyncBN to BN
segmentor = _convert_batchnorm(segmentor)

num_classes = segmentor.decode_head.num_classes

if args.checkpoint:
checkpoint = load_checkpoint(
segmentor, args.checkpoint, map_location='cpu')

# conver model to onnx file
pytorch2onnx(
segmentor,
input_shape,
opset_version=args.opset_version,
show=args.show,
output_file=args.output_file,
verify=args.verify)

0 comments on commit a81b1bb

Please sign in to comment.