This repository has been archived by the owner on Mar 12, 2023. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathprocess.py
149 lines (125 loc) · 6.86 KB
/
process.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
from utilities import utilities
data = utilities.data.all
if __name__ == "__main__":
# Temporary compatibility for expected output format in Hugo source files for some data
def __case_sum_list__(case_sums):
return [case_sums["howell_county"], case_sums["west_plains"], case_sums["willow_springs"], case_sums["mountain_view"], case_sums["other"]]
# Returns a list of months for the date
def __months_list__(d):
months = utilities.unique([day["date"][:7] for day in utilities.data.cumulative_data(d)])
return months
relative = {}
monthly = {}
active_by_town = {}
summary = {}
table_data = []
chart_data = []
# Last updated date
summary["last_updated"] = utilities.data.today["date"]
for i, day in enumerate(utilities.data.calculation):
d = day["date"]
print(f"Processing data for {d}...")
week_ago_day = utilities.data.week_ago(d)
# Calculate date-relative totals
cases_new = utilities.calc.case_sums([utilities.data.data_for_date(d)])
cases_past_week = utilities.calc.case_sums(utilities.data.data_for_days_ended(7, d))
cases_mtd = utilities.calc.case_sums(utilities.data.mtd_data(d))
cases_ytd = utilities.calc.case_sums(utilities.data.ytd_data(d))
cases_all = utilities.calc.case_sums(utilities.data.cumulative_data(d))
relative[d] = [
{'label': 'Today', 'totals': __case_sum_list__(cases_new)},
{'label': 'Past Week', 'totals': __case_sum_list__(cases_past_week)},
{'label': 'MTD', 'totals': __case_sum_list__(cases_mtd)},
{'label': 'YTD', 'totals': __case_sum_list__(cases_ytd)},
{'label': 'All', 'totals': __case_sum_list__(cases_all)},
]
# Calculate monthly totals
years = utilities.unique([month[:4] for month in __months_list__(d)])
yearly_monthly_data = []
for year in years:
year_months = [month for month in __months_list__(d) if month[:4] == year]
yearly_monthly_data.append({'year': year, 'data': [{'month': month, 'totals': __case_sum_list__(utilities.calc.case_sums(utilities.data.data_for_month(month, d)))} for month in year_months]})
monthly[d] = yearly_monthly_data
# Calculate estimated active cases by town
active_by_town_estimates = utilities.calc.active_cases_by_town(d)
active_list = []
for town in utilities.geo.towns:
if active_by_town_estimates[town] > 0:
town_name = utilities.geo.towns[town]["formatted"]
if not utilities.geo.towns[town]["in_county"]:
town_name += "**"
active_list.append({
'key': town.replace('_', '-'),
'town': town_name,
'active': active_by_town_estimates[town]
})
active_list = sorted(active_list, key=lambda i: i["town"])
active_by_town[d] = active_list
summary_day = {}
# Risk level
summary_day["risk_category"] = utilities.calc.risk_level(d)
summary_day["new_cases_14d_100k"] = utilities.calc.per_100k(utilities.calc.cases_added(day["date"], n=14)["cases"]["howell_county"]/14)
# CDC Level of Community Transmission
summary_day["community_transmission"] = utilities.calc.community_transmission(d)
# 7-day new cases and change
new_cases_7d = utilities.calc.cases_added(d)
summary_day["new_cases_7d"] = utilities.calc.summary_new_cases_7d(d)
# Active cases
summary_day["active_cases"] = utilities.calc.summary_active_cases(d)
summary_day["active_cases_change"] = utilities.calc.summary_active_cases_change(d)
# Vaccinations
vaccinations_summary = utilities.calc.summary_vaccinations(d)
if vaccinations_summary is not None:
summary_day["completed_percentage"] = vaccinations_summary["completed_percentage"]
summary_day["initiated_percentage"] = vaccinations_summary["initiated_percentage"]
# Positivity rate
positivity_rate_2w = utilities.calc.summary_positivity_rate(d, lag_days=3)
positivity_rate_change = utilities.calc.summary_positivity_rate_change(d, lag_days=3)
if positivity_rate_2w is not None:
summary_day["positivity_rate_2w"] = positivity_rate_2w
if positivity_rate_change is not None:
summary_day["positivity_rate_2w_change"] = positivity_rate_change
# Hospitalizations
if utilities.calc.summary_hospitalizations(d) is not None:
summary_day["hospitalizations"] = utilities.calc.summary_hospitalizations(d)
if utilities.calc.summary_hospitalizations_change(d) is not None:
summary_day["hospitalizations_change"] = utilities.calc.summary_hospitalizations_change(d)
# Deaths
if utilities.calc.summary_deaths(d) is not None:
summary_day["deaths"] = utilities.calc.summary_deaths(d)
if utilities.calc.summary_deaths_change(d) is not None:
summary_day["deaths_change"] = utilities.calc.summary_deaths_change(d)
# 7-day new tests
if utilities.calc.summary_new_tests_7d(d) is not None:
summary_day["new_tests_7d"] = utilities.calc.summary_new_tests_7d(d, lag_days=3)
if utilities.calc.summary_new_tests_7d_change(d) is not None:
summary_day["new_tests_7d_change"] = utilities.calc.summary_new_tests_7d_change(d, lag_days=3)
# Add the previous/next dates as appropriate
if i == 0:
summary_day["next_date"] = utilities.data.calculation[i+1]["date"]
elif i == len(utilities.data.calculation)-1:
summary_day["prev_date"] = utilities.data.calculation[i-1]["date"]
else:
summary_day["prev_date"] = utilities.data.calculation[i-1]["date"]
summary_day["next_date"] = utilities.data.calculation[i+1]["date"]
# Set some flags for hiding charts when needed
if week_ago_day is None:
# Days for which all charts should be hidden
summary_day["hide_charts"] = 'all'
elif i < 147:
# Days for which testing charts should be hidden
summary_day["hide_charts"] = 'test'
elif i < 161:
# Days for which the positivity rate chart should be hidden
summary_day["hide_charts"] = 'pos_rate'
summary[d] = summary_day
# Table data
table_data.append(utilities.calc.table_dict(d))
# Chart data
chart_data.append(utilities.calc.chart_dict(d))
utilities.save_json(relative, 'data/relative.json')
utilities.save_json(monthly, 'data/monthly.json')
utilities.save_json(active_by_town, 'data/active_town.json')
utilities.save_json(summary, 'data/summary.json')
utilities.save_json(table_data, 'data/daily.json')
utilities.save_json(chart_data, 'assets/js/chart-data.json')