forked from ASPteaching/stats-ml-4metabolomics
-
Notifications
You must be signed in to change notification settings - Fork 0
/
4.1a-ML-Introduction.Rmd
205 lines (126 loc) · 3.93 KB
/
4.1a-ML-Introduction.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
---
title: 'Targeted Metabolomics Data Analysis: Unlocking Insights with Machine Learning, AI and Statistics'
subtitle: 'Day 3 – Lecture 1a-Introduction to Machine Learning'
author: "June 11-14, 2024"
institute: "Barcelona, Spain"
date: ""
output:
xaringan::moon_reader:
css: [default, metropolis, metropolis-fonts, "mycss.css"]
lib_dir: libs
nature:
ratio: '16:9'
highlightStyle: github
highlightLines: true
countIncrementalSlides: true
editor_options:
chunk_output_type: console
---
<style type="text/css">
.remark-slide-content {
font-size: 22px;
padding: 1em 4em 1em 4em;
}
.left-code {
color: #777;
width: 38%;
height: 92%;
float: left;
}
.right-plot {
width: 60%;
float: right;
padding-left: 1%;
}
</style>
```{r setup, include=FALSE}
options(htmltools.dir.version = FALSE, echo=FALSE,
message=FALSE,warning=FALSE,
fig.dim=c(4.8, 4.5), fig.retina=2, out.width="100%")
knitr::opts_chunk$set(echo = FALSE)
knitr::knit_hooks$set(mysize = function(before, options, envir) {
if (before)
return(options$size)
})
```
# Outline
.columnwide[
### 1) Introduction
### 2) Statistical Learning
### 3) Overfitting
### 4) Evaluating Machine Learning Models
### 5) The workflow of Machine Learning
### 7) References and Resources
]
---
class: inverse, middle, center
name: Introduction
# Introduction and motivation
---
# Machine Learning, A new field?
.center[
## *Machine Learning is The field of study that gives computers the ability to learn without being explicitly programmed.*”
Arthur Samuel (1956)
]
```{r out.width="80%", fig.cap='From spectra and images to data tables'}
knitr::include_graphics("3.1-StatisticsBackground_insertimage_1.png")
```
---
# ML vs traditional programming
```{r out.width="80%", fig.cap='From spectra and images to data tables'}
knitr::include_graphics("3.1-StatisticsBackground_insertimage_2.png")
```
---
# ML vs traditional programming (ctd.)
```{r out.width="80%", fig.cap='From spectra and images to data tables'}
knitr::include_graphics("3.1-StatisticsBackground_insertimage_3.png")
```
<!-- --- -->
<!-- # ML vs conventional programming -->
<!-- - Conventional computer programs or algorithms perform tedious tasks faster and more accurately than humans -->
<!-- - Tasks Example: *Addition, subtraction, spell-checking* -->
<!-- - Machine learning algorithms perform tasks that are difficult or infeasible to do via conventional computer algorithms -->
<!-- - Tasks Example: *Grammar checking, interpreting speech, image recognition* -->
---
<!-- # Learning vs Machine Learning -->
<!-- - **Learning** -->
<!-- - Any process by which an organism or system improves performance from experience. -->
<!-- - **Machine Learning** -->
<!-- – A branch of artificial intelligence (AI) in which a computer automatically improves performance from experience. -->
<!-- - A technique to develop programs that can make predictions or decisions without being explicitly programmed to do so -->
<!-- --- -->
---
# A Machine Learning Workflow
```{r out.width="80%", fig.cap='', fig.align='center'}
knitr::include_graphics("3.1-StatisticsBackground_insertimage_4.png")
```
---
# Another ML Workflow
```{r out.width="80%", fig.cap='', fig.align='center'}
knitr::include_graphics("3.1-StatisticsBackground_insertimage_5.png")
```
---
# Contruct your dataset
![Plot title. ](3.1-StatisticsBackground_insertimage_6.png)
# Data Transformation
![Plot title. ](3.1-StatisticsBackground_insertimage_7.png)
# Feature Engineering
# Scaling, Normalizing Standardizing
```{r out.width="80%", fig.cap='', fig.align='center'}
knitr::include_graphics("")
```
---
#
```{r out.width="80%", fig.cap='', fig.align='center'}
knitr::include_graphics("")
```
---
#
```{r out.width="80%", fig.cap='', fig.align='center'}
knitr::include_graphics("")
```
---
class: inverse, middle, center
name: Resources
# References and Resources
---