-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
325 lines (261 loc) · 13.1 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
import sys
from dataloader import getFocalstackLoaders, getStackedLFLoaders
from parser import parseTrainingArgs
# import argparse
import time
import csv
import numpy as np
import torch
import torch.backends.cudnn as cudnn
import torch.optim
import torch.utils.data
import custom_transforms
import lfmodels as models
from utils import tensor2array, save_checkpoint, make_save_path, log_output_tensorboard, dump_config
from loss_functions import photometric_reconstruction_loss, explainability_loss, smooth_loss, compute_errors
from logger import TermLogger, AverageMeter
from tensorboardX import SummaryWriter
best_error = -1
n_iter = 0
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
def main():
global best_error, n_iter, device
args = parseTrainingArgs()
args.training_output_freq = 100
save_path = make_save_path(args)
args.save_path = save_path
dump_config(save_path, args)
print('=> Saving checkpoints to {}'.format(save_path))
torch.manual_seed(args.seed)
tb_writer = SummaryWriter(save_path)
# Data preprocessing
train_transform = valid_transform = custom_transforms.Compose([
custom_transforms.ArrayToTensor(),
custom_transforms.Normalize(mean=0.5, std=0.5)
])
# Create dataloader
print("=> Fetching scenes in '{}'".format(args.data))
if args.lfformat == 'focalstack':
train_set, val_set = getFocalstackLoaders(args, train_transform, valid_transform)
elif args.lfformat == 'stack':
train_set, val_set = getStackedLFLoaders(args, train_transform, valid_transform)
print('=> {} samples found in {} train scenes'.format(len(train_set), len(train_set.scenes)))
print('=> {} samples found in {} valid scenes'.format(len(val_set), len(val_set.scenes)))
# Create batch loader
train_loader = torch.utils.data.DataLoader(train_set, batch_size=args.batch_size, shuffle=True, num_workers=args.workers, pin_memory=True)
val_loader = torch.utils.data.DataLoader(val_set, batch_size=args.batch_size, shuffle=False, num_workers=args.workers, pin_memory=True)
# Pull first example from dataset to check number of channels
input_channels = train_set[0][1].shape[0]
args.epoch_size = len(train_loader)
print("=> Using {} input channels, {} total batches".format(input_channels, args.epoch_size))
# create model
print("=> Creating models")
disp_net = models.LFDispNet(in_channels=input_channels).to(device)
output_exp = args.mask_loss_weight > 0
pose_exp_net = models.LFPoseNet(in_channels=input_channels, nb_ref_imgs=args.sequence_length - 1, output_exp=args.mask_loss_weight > 0).to(device)
if args.pretrained_exp_pose:
print("=> Using pre-trained weights for explainabilty and pose net")
weights = torch.load(args.pretrained_exp_pose)
pose_exp_net.load_state_dict(weights['state_dict'], strict=False)
else:
pose_exp_net.init_weights()
if args.pretrained_disp:
print("=> Using pre-trained weights for Dispnet")
weights = torch.load(args.pretrained_disp)
disp_net.load_state_dict(weights['state_dict'])
else:
disp_net.init_weights()
cudnn.benchmark = True
disp_net = torch.nn.DataParallel(disp_net)
pose_exp_net = torch.nn.DataParallel(pose_exp_net)
print('=> Setting adam solver')
optim_params = [
{'params': disp_net.parameters(), 'lr': args.lr},
{'params': pose_exp_net.parameters(), 'lr': args.lr}
]
optimizer = torch.optim.Adam(optim_params, betas=(args.momentum, args.beta), weight_decay=args.weight_decay)
with open(save_path/args.log_summary, 'w') as csvfile:
writer = csv.writer(csvfile, delimiter='\t')
writer.writerow(['train_loss', 'validation_loss'])
with open(save_path/args.log_full, 'w') as csvfile:
writer = csv.writer(csvfile, delimiter='\t')
writer.writerow(['train_loss', 'photo_loss', 'explainability_loss', 'smooth_loss'])
logger = TermLogger(n_epochs=args.epochs, train_size=min(len(train_loader), args.epoch_size), valid_size=len(val_loader))
logger.epoch_bar.start()
for epoch in range(args.epochs):
logger.epoch_bar.update(epoch)
# train for one epoch
logger.reset_train_bar()
train_loss = train(args, train_loader, disp_net, pose_exp_net, optimizer, args.epoch_size, logger, tb_writer)
logger.train_writer.write(' * Avg Loss : {:.3f}'.format(train_loss))
# evaluate on validation set
logger.reset_valid_bar()
errors, error_names = validate_without_gt(args, val_loader, disp_net, pose_exp_net, epoch, logger, tb_writer)
error_string = ', '.join('{} : {:.3f}'.format(name, error) for name, error in zip(error_names, errors))
logger.valid_writer.write(' * Avg {}'.format(error_string))
for error, name in zip(errors, error_names):
tb_writer.add_scalar(name, error, epoch)
# Up to you to chose the most relevant error to measure your model's performance, careful some measures are to maximize (such as a1,a2,a3)
decisive_error = errors[1]
if best_error < 0:
best_error = decisive_error
# remember lowest error and save checkpoint
is_best = decisive_error < best_error
best_error = min(best_error, decisive_error)
save_checkpoint(save_path, {
'epoch': epoch + 1,
'state_dict': disp_net.module.state_dict()
}, {
'epoch': epoch + 1,
'state_dict': pose_exp_net.module.state_dict()
}, is_best)
with open(save_path/args.log_summary, 'a') as csvfile:
writer = csv.writer(csvfile, delimiter='\t')
writer.writerow([train_loss, decisive_error])
logger.epoch_bar.finish()
def train(args, train_loader, disp_net, pose_exp_net, optimizer, epoch_size, logger, tb_writer):
global n_iter, device
batch_time = AverageMeter()
data_time = AverageMeter()
losses = AverageMeter(precision=4)
w1, w2, w3, w4 = args.photo_loss_weight, args.mask_loss_weight, args.smooth_loss_weight, args.gt_pose_loss_weight
# switch to train mode
disp_net.train()
pose_exp_net.train()
end = time.time()
logger.train_bar.update(0)
for i, (tgt_img, tgt_lf, ref_imgs, ref_lfs, intrinsics, intrinsics_inv, pose_gt) in enumerate(train_loader):
log_losses = i > 0 and n_iter % args.print_freq == 0
log_output = args.training_output_freq > 0 and n_iter % args.training_output_freq == 0
# measure data loading time
data_time.update(time.time() - end)
tgt_img = tgt_img.to(device)
ref_imgs = [img.to(device) for img in ref_imgs]
tgt_lf = tgt_lf.to(device)
ref_lfs = [lf.to(device) for lf in ref_lfs]
intrinsics = intrinsics.to(device)
pose_gt = pose_gt.to(device)
# compute output
disparities = disp_net(tgt_lf)
depth = [1/disp for disp in disparities]
explainability_mask, pose = pose_exp_net(tgt_lf, ref_lfs)
loss_1, warped, diff = photometric_reconstruction_loss(
tgt_img, ref_imgs, intrinsics,
depth, explainability_mask, pose,
args.rotation_mode, args.padding_mode
)
if w2 > 0:
loss_2 = explainability_loss(explainability_mask)
else:
loss_2 = 0
loss_3 = smooth_loss(depth)
pred_pose_magnitude = pose[:,:,:3].norm(dim=2)
pose_gt_magnitude = pose_gt[:,:,:3].norm(dim=2)
pose_loss = (pred_pose_magnitude - pose_gt_magnitude).abs().mean()
loss = w1*loss_1 + w2*loss_2 + w3*loss_3 + w4*pose_loss
if log_losses:
tb_writer.add_scalar('train/photometric_error', loss_1.item(), n_iter)
tb_writer.add_scalar('train/smoothness_loss', loss_3.item(), n_iter)
tb_writer.add_scalar('train/total_loss', loss.item(), n_iter)
tb_writer.add_scalar('train/pose_loss', pose_loss.item(), n_iter)
if w2 > 0:
tb_writer.add_scalar('train/explanability_loss', loss_2.item(), n_iter)
if log_output:
tb_writer.add_image('train/Input', tensor2array(tgt_img[0]), n_iter)
for k, scaled_maps in enumerate(zip(depth, disparities, warped, diff, explainability_mask)):
log_output_tensorboard(tb_writer, "train", 0, k, n_iter, *scaled_maps)
break
# record loss and EPE
losses.update(loss.item(), args.batch_size)
# compute gradient and do Adam step
optimizer.zero_grad()
loss.backward()
optimizer.step()
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
with open(args.save_path/args.log_full, 'a') as csvfile:
writer = csv.writer(csvfile, delimiter='\t')
writer.writerow([loss.item(), loss_1.item(), loss_2.item() if w2 > 0 else 0, loss_3.item()])
logger.train_bar.update(i+1)
if i % args.print_freq == 0:
logger.train_writer.write('Train: Time {} Data {} Loss {}'.format(batch_time, data_time, losses))
if i >= epoch_size - 1:
break
n_iter += 1
return losses.avg[0]
@torch.no_grad()
def validate_without_gt(args, val_loader, disp_net, pose_exp_net, epoch, logger, tb_writer, sample_nb_to_log=2):
global device
batch_time = AverageMeter()
losses = AverageMeter(i=3, precision=4)
log_outputs = sample_nb_to_log > 0
w1, w2, w3, w4 = args.photo_loss_weight, args.mask_loss_weight, args.smooth_loss_weight, args.gt_pose_loss_weight
poses = np.zeros(((len(val_loader)-1) * args.batch_size * (args.sequence_length-1),6))
disp_values = np.zeros(((len(val_loader)-1) * args.batch_size * 3))
# switch to evaluate mode
disp_net.eval()
pose_exp_net.eval()
end = time.time()
logger.valid_bar.update(0)
for i, (tgt_img, tgt_lf, ref_imgs, ref_lfs, intrinsics, intrinsics_inv, pose_gt) in enumerate(val_loader):
tgt_img = tgt_img.to(device)
ref_imgs = [img.to(device) for img in ref_imgs]
tgt_lf = tgt_lf.to(device)
ref_lfs = [lf.to(device) for lf in ref_lfs]
intrinsics = intrinsics.to(device)
intrinsics_inv = intrinsics_inv.to(device)
pose_gt = pose_gt.to(device)
# compute output
disp = disp_net(tgt_lf)
depth = 1/disp
explainability_mask, pose = pose_exp_net(tgt_lf, ref_lfs)
loss_1, warped, diff = photometric_reconstruction_loss(tgt_img, ref_imgs,
intrinsics, depth,
explainability_mask, pose,
args.rotation_mode, args.padding_mode)
loss_1 = loss_1.item()
if w2 > 0:
loss_2 = explainability_loss(explainability_mask).item()
else:
loss_2 = 0
loss_3 = smooth_loss(depth).item()
pred_pose_magnitude = pose[:,:,:3].norm(dim=2)
pose_gt_magnitude = pose_gt[:,:,:3].norm(dim=2)
pose_loss = (pred_pose_magnitude - pose_gt_magnitude).abs().mean()
if log_outputs and i < sample_nb_to_log - 1: # log first output of first batches
if epoch == 0:
for j,ref in enumerate(ref_imgs):
tb_writer.add_image('val/Input {}/{}'.format(j, i), tensor2array(tgt_img[0]), 0)
tb_writer.add_image('val/Input {}/{}'.format(j, i), tensor2array(ref[0]), 1)
log_output_tensorboard(tb_writer, 'val', i, '', epoch, 1./disp, disp, warped[0], diff[0], explainability_mask)
if log_outputs and i < len(val_loader)-1:
step = args.batch_size*(args.sequence_length-1)
poses[i * step:(i+1) * step] = pose.cpu().view(-1,6).numpy()
step = args.batch_size * 3
disp_unraveled = disp.cpu().view(args.batch_size, -1)
disp_values[i * step:(i+1) * step] = torch.cat([disp_unraveled.min(-1)[0],
disp_unraveled.median(-1)[0],
disp_unraveled.max(-1)[0]]).numpy()
loss = w1*loss_1 + w2*loss_2 + w3*loss_3 + w4*pose_loss
losses.update([loss, loss_1, loss_2])
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
logger.valid_bar.update(i+1)
if i % args.print_freq == 0:
logger.valid_writer.write('valid: Time {} Loss {}'.format(batch_time, losses))
if log_outputs:
prefix = 'valid poses'
coeffs_names = ['tx', 'ty', 'tz']
if args.rotation_mode == 'euler':
coeffs_names.extend(['rx', 'ry', 'rz'])
elif args.rotation_mode == 'quat':
coeffs_names.extend(['qx', 'qy', 'qz'])
for i in range(poses.shape[1]):
tb_writer.add_histogram('{} {}'.format(prefix, coeffs_names[i]), poses[:,i], epoch)
tb_writer.add_histogram('disp_values', disp_values, epoch)
logger.valid_bar.update(len(val_loader))
return losses.avg, ['val/total_loss', 'val/photometric_error', 'val/explainability_loss']
if __name__ == '__main__':
main()