-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdatacollection.py
84 lines (79 loc) · 2.93 KB
/
datacollection.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
import pandas as pd
import re
# Read the file and extract relevant fields
file_path = "1ue-35M"
output_file = "1ue-35M.csv"
columns = {
"available_dl_prbs": [],
"available_ul_prbs": [],
"dl_bytes": [],
"ul_bytes": [],
"dl_prbs": [],
"ul_prbs": [],
"tx_pkts": [],
"tx_errors": [],
"rx_pkts": [],
"rx_errors": [],
"rx_brate": [],
"dl_cqi": [],
"dl_ri": [],
"dl_pmi": [],
"ul_phr": [],
"ul_sinr": [],
"ul_mcs": [],
"ul_samples": [],
"dl_mcs": [],
"dl_samples": []
# Add more fields as needed
}
pattern = r"available_dl_prbs=(\d+)\s+available_ul_prbs=(\d+)\s+ue\[\d+\]={dl_bytes=(\d+),ul_bytes=(\d+),dl_prbs=(\d+),ul_prbs=(\d+),tx_pkts=(\d+),tx_errors=(\d+),tx_brate=(\d+),rx_pkts=(\d+),rx_errors=(\d+),rx_brate=(\d+),dl_cqi=(\d+),dl_ri=(\d+),dl_pmi=(\d+),ul_phr=(\d+),ul_sinr=([\d.]+),ul_mcs=([\d.]+),ul_samples=(\d+),dl_mcs=([\d.]+),dl_samples=(\d+)"
with open(file_path, "r") as file:
for line in file:
match = re.search(pattern, line)
if match:
available_dl_prbs = match.group(1)
available_ul_prbs = match.group(2)
dl_bytes = match.group(3)
ul_bytes = match.group(4)
dl_prbs = match.group(5)
ul_prbs = match.group(6)
tx_pkts = match.group(7)
tx_errors = match.group(8)
tx_brate = match.group(9)
rx_pkts = match.group(10)
rx_errors = match.group(11)
rx_brate = match.group(12)
dl_cqi = match.group(13)
dl_ri = match.group(14)
dl_pmi = match.group(15)
ul_phr = match.group(16)
ul_sinr = match.group(17)
ul_mcs = match.group(18)
ul_samples = match.group(19)
dl_mcs = match.group(20)
dl_samples = match.group(21)
columns["available_dl_prbs"].append(available_dl_prbs)
columns["available_ul_prbs"].append(available_ul_prbs)
columns["dl_bytes"].append(dl_bytes)
columns["ul_bytes"].append(ul_bytes)
columns["dl_prbs"].append(dl_prbs)
columns["ul_prbs"].append(ul_prbs)
columns["tx_pkts"].append(tx_pkts)
columns["tx_errors"].append(tx_errors)
columns["rx_pkts"].append(rx_pkts)
columns["rx_errors"].append(rx_errors)
columns["rx_brate"].append(rx_brate)
columns["dl_cqi"].append(dl_cqi)
columns["dl_ri"].append(dl_ri)
columns["dl_pmi"].append(dl_pmi)
columns["ul_phr"].append(ul_phr)
columns["ul_sinr"].append(ul_sinr)
columns["ul_mcs"].append(ul_mcs)
columns["ul_samples"].append(ul_samples)
columns["dl_mcs"].append(dl_mcs)
columns["dl_samples"].append(dl_samples)
# Create a DataFrame from the extracted fields
df = pd.DataFrame(columns)
df.to_csv(output_file, index=False)
# Print the DataFrame
print(df)