-
Notifications
You must be signed in to change notification settings - Fork 0
/
matyas.py
196 lines (155 loc) · 9.67 KB
/
matyas.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
from common import *
import numpy as np
import concurrent.futures
from threading import Lock
import time
THREADS = 5 # The amount of threads that will run the EA loop concurrently on the same population
print_lock = Lock() # Thread lock for the print statements
POPULATION_SIZE = 10 # The maximum size of the population for each generation
LOWER_BOUND = -10 # The lower limit that a gene value can be, default = -10
UPPER_BOUND = 10 # The upper limit that a gene value can be, default = 10
CROSSOVER_RATE = 0.8 # The proportion of the population that will crossover to produce offspring each generation
MUTATION_RATE = 0.2 # The chance each offspring has of a gene (or multiple genes) being mutated each generation
MUTATIONS = 1 # The number of genes that are mutated if an offspring is selected for mutation
GENERATIONS = 100 # The number of generations to run (if using as termination condition)
SOLUTION_FOUND = False # Whether an exact solution has been found (if using as termination condition)
def matyas_compute_fitness(population):
# Calculate the result based on: 0.26*(x1^2 + x2^2) - 0.48*x1*x2 , for each individuals values in the population
result = (0.26 * ((population[:,0] ** 2) + (population[:,1] ** 2))) \
- (0.48 * population[:,0] * population[:,1])
fitness = abs(result[0:,]) # Calculate the results absolute distance from 0, the minimal solution
return fitness
def main_threaded_loop(population, thread_no):
global POPULATION_SIZE
global LOWER_BOUND
global UPPER_BOUND
global GENERATIONS
global SOLUTION_FOUND # Replace with local variable: SOLUTION_FOUND = False, to not stop other threads if solution is found in one thread
global CROSSOVER_RATE
global MUTATION_RATE
global MUTATIONS
thread_data = [0,[],[]] # List used to store execution time data at index 0, fittest value per gen at index 1 and mean fitness per gen at index 2
# Calculate the fitness of the initial population and store fittest individual and mean fitness value data
# NOTE: the following code can be commented out if data collection is not required
initial_fitness = matyas_compute_fitness(population)
thread_data[1].append(initial_fitness[np.argmin(initial_fitness)])
thread_data[2].append(np.mean(initial_fitness))
# Start a generation counter at 1
generation_counter = 1
# Set the start time before EA loop
start_time = time.time()
# Termination condition. Can be set to just (SOLUTION_FOUND == False) to run until solution is found
while (GENERATIONS > generation_counter) and (SOLUTION_FOUND == False):
###############################################################################
######################### EVOLUTIONARY ALGORITHM LOOP #########################
###############################################################################
# Choose parents from the initial population based on roulette wheel probability selection
# Will select amount of parents to satisfy the 'CROSSOVER_RATE'
# If 'multi_selection' set to false, parents can only be chosen once each
parents = selection_roulette(population, matyas_compute_fitness(population), CROSSOVER_RATE, multi_selection=True)
# Complete crossover of parents to produce their offspring
# 'single_point_crossover' will choose 1 random position in each parents genome to crossover at
children = single_point_crossover_opt(parents)
# Mutate the children using a random gene with random value with LOWER_BOUND < x < UPPER_BOUND range
# The chance a child will be mutated is specified using 'MUTATION_RATE'
# The amount of genes to mutate is specified using 'MUTATIONS'
children = uniform_mutation(children, LOWER_BOUND, UPPER_BOUND, MUTATION_RATE, MUTATIONS)
population = np.vstack((population, children)) # Add the mutated children back into the population
# Calculate the next generation of the population, this is done by killing all the weakest individuals
# until the population is reduced to 'POPULATION_SIZE'
population = next_generation(population, matyas_compute_fitness(population), POPULATION_SIZE)
###############################################################################
###############################################################################
################################ DATA TRACKING ################################
###############################################################################
# Calculate the fitness of the current gen population
generation_fitness = matyas_compute_fitness(population)
# Store fittest individual and mean fitness value data
# NOTE: this section can commented out if data collection is not required to increase optimisation
thread_data[1].append(generation_fitness[np.argmin(generation_fitness)])
thread_data[2].append(np.mean(generation_fitness))
# Check if a solution is found
if 0 in generation_fitness:
SOLUTION_FOUND = True
# Increment the generation counter before reiterating through loop
generation_counter += 1
###############################################################################
continue
# Calculate the EA loops execution time and store data
thread_data[0] = time.time() - start_time
# After termination condition is met, lock thread and print results before returning data
with print_lock:
print('')
print('##################################################################################################################################')
print('############################################################ THREAD ' + str(thread_no) + ' ############################################################')
print('##################################################################################################################################')
print('')
print('EXECUTION TIME:')
print('')
print(str(thread_data[0]) + 's')
print('')
print('FINAL GENERATION:')
display_population(population, matyas_compute_fitness(population), population.shape[0])
print('')
print('FITTEST INDIVIDUAL:')
print('')
print('#############################')
display_fittest_individual(population, matyas_compute_fitness(population))
print('#############################')
print('')
print('EXECUTION TIME:')
print(str(thread_data[0]) + 's')
print('')
return thread_data
if __name__ == '__main__':
print('')
print('#######################################################################################')
print('########################### MATYAS EVOLUTIONARY ALGORITHM #############################')
print('#######################################################################################')
# Generate initial population given parameters, function only takes 2 dimensions so individual_size hardcoded at 2
initial_population = generate_population(POPULATION_SIZE, 2, LOWER_BOUND, UPPER_BOUND)
print('')
print('INITIAL POPULATION:')
display_population(initial_population, matyas_compute_fitness(initial_population), initial_population.shape[0])
print('')
print('STARTING EVOLUTIONARY ALGORITHM THREADS...')
data = [] # Initialise list to store thread_data futures
# Initialise a ThreadPoolExecutor with 'THREADS' thread pool size
# and execute the 'main_threaded_loop' on each thread in the pool
# store the return futures for each thread to be processed later...
with concurrent.futures.ThreadPoolExecutor(max_workers=THREADS) as executor:
for n in range(THREADS):
data.append(executor.submit(main_threaded_loop, initial_population, n))
execution_time_data = [] # EA loop execution time in seconds
fittest_data = [] # Fittest individual in each generation
avg_fitness_data = [] # Average (mean) fitness of each generation
# Unpack the 'data' futures list data for each thread and store in a separate list for each data set
for n in range(THREADS):
execution_time_data.append(data[n].result()[0])
fittest_data.append(data[n].result()[1])
avg_fitness_data.append(data[n].result()[2])
# Plot fittest individual against generations for full fitness range, then from 0 < x < 1 fitness range
plot_data_full("Fittest Individual Full", fittest_data)
plot_data_ylim("Fittest Individual Limited", fittest_data, 1)
# Plot average fitness against generations for full fitness range, then from 0 < x < 1 fitness range
plot_data_full("Avg Fitness Full", avg_fitness_data)
plot_data_ylim("Avg Fitness Limited", avg_fitness_data, 1)
print('')
print('#######################################################################################')
print('################################ ALL THREADS EXECUTED! ################################')
print('#######################################################################################')
print('')
generations_solution = []
total_generations = 0
for n in range(THREADS):
print('THREAD: ' + str(n) + ' GENERATIONS: ' + str(len(fittest_data[n])), end="")
total_generations += len(fittest_data[n])
if 0 in fittest_data[n]:
generations_solution.append(len(fittest_data[n]))
print(', SOLUTION IN THREAD!')
else:
print()
print('')
print('MEAN EXECUTION TIME: ' + str(np.mean(execution_time_data)) + 's')
print('MEAN GENERATIONS: ' + str(int(total_generations / THREADS)))
#print('MEAN GENERATIONS UNTIL SOLUTION: ' + str(int(np.mean(generations_solution))))