-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathsmc_oopsi_backward.m
165 lines (145 loc) · 6.4 KB
/
smc_oopsi_backward.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
function M = smc_oopsi_backward(S,V,P)
% this function iterates backward one step computing P[H_t | H_{t+1},O_{0:T}]
% Input---
% Sim: simulation metadata
% S: particle positions and weights
% P: parameters
% Z: a bunch of stuff initialized for speed
% t: current time step
%
% Output is a single structure Z with the following fields
% n1: vector of spikes or no spike for each particle at time t
% C0: calcium positions at t-1
% C1: calcium positions at t (technically, this need not be output)
% C1mat:matrix from C1
% C0mat:matrix from C0
% w_b: backwards weights
fprintf('\nbackward step: ')
Z.oney = ones(V.Nparticles,1); % initialize stuff for speed
Z.zeroy = zeros(V.Nparticles);
Z.C0 = S.C(:,V.T);
Z.C0mat = Z.C0(:,Z.oney)';
if V.est_c==false % if not maximizing the calcium parameters, then the backward step is simple
if V.use_true_n % when spike train is provided, backwards is not necessary
S.w_b=S.w_f;
else
for t=V.T-V.freq-1:-1:V.freq+1 % actually recurse backwards for each time step
Z = step_backward(V,S,P,Z,t);
S.w_b(:,t-1) = Z.w_b; % update forward-backward weights
end
end
else % if maximizing calcium parameters,
% need to compute some sufficient statistics
M.Q = zeros(3); % the quadratic term for the calcium par
M.L = zeros(3,1); % the linear term for the calcium par
M.J = 0; % remaining terms for calcium par
M.K = 0;
for t=V.T-V.freq-1:-1:V.freq+1
if V.use_true_n % force true spikes hack
Z.C0 = S.C(t-1);
Z.C0mat = Z.C0;
Z.C1 = S.C(t);
Z.C1mat = Z.C1;
Z.PHH = 1;
Z.w_b = 1;
Z.n1 = S.n(t);
else
Z = step_backward(V,S,P,Z,t);
end
S.w_b(:,t-1) = Z.w_b;
% below is code to quickly get sufficient statistics
C0dt = Z.C0*V.dt;
bmat = Z.C1mat-Z.C0mat';
bPHH = Z.PHH.*bmat;
M.Q(1,1)= M.Q(1,1) + sum(Z.PHH*(C0dt.^2)); % Q-term in QP
M.Q(1,2)= M.Q(1,2) - Z.n1'*Z.PHH*C0dt;
M.Q(1,3)= M.Q(1,3) + sum(sum(-Z.PHH.*Z.C0mat'*V.dt^2));
M.Q(2,2)= M.Q(2,2) + sum(Z.PHH'*(Z.n1.^2));
M.Q(2,3)= M.Q(2,3) + sum(sum(Z.PHH(:).*repmat(Z.n1,V.Nparticles,1))*V.dt);
M.Q(3,3)= M.Q(3,3) + sum(Z.PHH(:))*V.dt^2;
M.L(1) = M.L(1) + sum(bPHH*C0dt); % L-term in QP
M.L(2) = M.L(2) - sum(bPHH'*Z.n1);
M.L(3) = M.L(3) - V.dt*sum(bPHH(:));
M.J = M.J + sum(Z.PHH(:)); % J-term in QP /sum J^(i,j)_{t,t-1}/
M.K = M.K + sum(Z.PHH(:).*bmat(:).^2); % K-term in QP /sum J^(i,j)_{t,t-1} (d^(i,j)_t)^2/
end
M.Q(2,1) = M.Q(1,2); % symmetrize Q
M.Q(3,1) = M.Q(1,3);
M.Q(3,2) = M.Q(2,3);
end
fprintf('\n')
% copy particle swarm for later
M.w = S.w_b;
M.n = S.n;
M.C = S.C;
if isfield(S,'h'), M.h=S.h; end
% check failure mode caused by too high P.A (low P.sigma_c)
% fact=1.55;
% if(sum(S.n(:))==0 && cnt<10) % means no spikes anywhere
% fprintf(['Failed to find any spikes, likely too high a P.A.\n',...
% 'Attempting to lower by factor %g...\n'],fact);
% P.A=P.A/fact;
% P.C_0=P.C_0/fact;
% P.sigma_c=P.sigma_c/fact;
% cnt=cnt+1;
% elseif(cnt>=10)
% M_best=M;
% E_best=P;
% fprintf('Warning: there are no spikes in the data. Wrong initialization?');
% return;
% end
M.nbar = sum(S.w_b.*S.n,1);
end
function Z = step_backward(V,S,P,Z,t)
% compute ln P[n_t^i | h_t^i]
Z.n1 = S.n(:,t); % for prettiness sake
ln_Pn = 0*Z.oney; % for fastiness sake
ln_Pn(Z.n1==1) = log(S.p(Z.n1==1,t)); % P[n=1] for those that spiked
ln_Pn(~Z.n1) = log(1-S.p(~Z.n1,t)); % P[n=0] for those that did not
% compute ln P[C_t^i | C_{t-1}^j, n_t^i]
Z.C0 = S.C(:,t-1); % for prettiness sake
Z.C1 = S.C(:,t);
Z.C1mat = Z.C1(:,Z.oney); % recall from previous time step
Z.C0mat = Z.C0(:,Z.oney); % faster than repamt
mu = (1-P.a)*S.C(:,t-1)+P.A*Z.n1+P.a*P.C_0;% mean
mumat = mu(:,Z.oney)'; % faster than repmat
ln_PC_Cn = -0.5*(Z.C1mat - mumat).^2/P.sig2_c; % P[C_t^i | C_{t-1}^j, n_t^i]
% compute ln P[h_t^i | h_{t-1}^j, n_{t-1}^i]
ln_Ph_hn = Z.zeroy; % reset transition prob for h terms
for m=1:V.Nspikehist % for each h term
h1 = S.h(:,t,m); % faster than repmat
h1 = h1(:,Z.oney);
h0 = P.g(m)*S.h(:,t-1,m)+S.n(:,t-1);
h0 = h0(:,Z.oney)';
ln_Ph_hn = ln_Ph_hn - 0.5*(h0 - h1).^2/P.sig2_h(m);
end
% compute P[H_t^i | H_{t-1}^j]
sum_lns = ln_Pn(:,Z.oney)+ln_PC_Cn + ln_Ph_hn; % in order to ensure this product doesn't have numerical errors
mx = max(sum_lns,[],1); % find max in each of row
mx = mx(Z.oney,:); % make a matrix of maxes
T0 = exp(sum_lns-mx); % exponentiate subtracting maxes (so that in each row, the max entry is exp(0)=1
Tn = sum(T0,1); % then normalize
T = T0.*repmat(1./Tn(:)', V.Nparticles, 1); % such that each column sums to 1
% compute P[H_t^i, H_{t-1}^j | O]
PHHn = (T*S.w_f(:,t-1))'; % denominator
PHHn(PHHn==0) = eps;
PHHn2 = PHHn(Z.oney,:)'; % faster than repmat
PHH = T .* (S.w_b(:,t)*S.w_f(:,t-1)')./PHHn2; % normalize such that sum(PHH)=1
sumPHH = sum(PHH(:));
if sumPHH==0
Z.PHH = ones(V.Nparticles)/(V.Nparticles);
else
Z.PHH = PHH/sum(PHH(:));
end
Z.w_b = sum(Z.PHH,1); % marginalize to get P[H_t^i | O]
if any(isnan(Z.w_b))
return
end
if mod(t,100)==0 && t>=9900
fprintf('\b\b\b\b\b%d',t)
elseif mod(t,100)==0 && t>=900
fprintf('\b\b\b\b%d',t)
elseif mod(t,100)==0
fprintf('\b\b\b%d',t)
end
end