-
Notifications
You must be signed in to change notification settings - Fork 1
/
HB_Device.h
602 lines (538 loc) · 16.8 KB
/
HB_Device.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
//- -----------------------------------------------------------------------------------------------------------------------
// AskSin++
// 2016-10-31 papa Creative Commons - http://creativecommons.org/licenses/by-nc-sa/3.0/de/
// 2018-09-03 jp112sdl Creative Commons - http://creativecommons.org/licenses/by-nc-sa/3.0/de/
//- -----------------------------------------------------------------------------------------------------------------------
#ifndef __DEVICE_H__
#define __DEVICE_H__
#include "AskSinPP.h"
#include "Sign.h"
#include "HMID.h"
#include "Channel.h"
#include "ChannelList.h"
#include "Message.h"
#include "Radio.h"
#include "Led.h"
#include "Activity.h"
#define OTA_CONFIG_START 0x7fe0 // start address of 16 byte config data in bootloader
#define OTA_MODEL_START 0x7ff0 // start address of 2 byte model id in bootloader
#define OTA_SERIAL_START 0x7ff2 // start address of 10 byte serial number in bootloader
#define OTA_HMID_START 0x7ffc // start address of 3 byte device id in bootloader
namespace as {
struct DeviceInfo {
uint8_t DeviceID[3];
char Serial[11];
uint8_t DeviceModel[2];
uint8_t Firmware;
uint8_t DeviceType;
uint8_t DeviceInfo[2];
};
template <class HalType, class List0Type = List0>
class Device {
public:
typedef typename HalType::LedType LedType;
typedef typename HalType::BatteryType BatteryType;
typedef typename HalType::RadioType RadioType;
private:
HalType* hal;
List0Type& list0;
uint8_t msgcount;
HMID lastdev;
uint8_t lastmsg;
#ifdef USE_HW_SERIAL
uint8_t device_id[3] = { 0x00, 0x00, 0x00 };
#endif
protected:
Message msg;
KeyStore kstore;
const DeviceInfo& info;
uint8_t numChannels;
public:
Device (const DeviceInfo& i, uint16_t addr, List0Type& l, uint8_t ch) : hal(0), list0(l), msgcount(0), lastmsg(0), kstore(addr), info(i), numChannels(ch) {}
virtual ~Device () {}
LedType& led () {
return hal->led;
}
BatteryType& battery () {
return hal->battery;
}
const BatteryType& battery () const {
return hal->battery;
}
RadioType& radio () {
return hal->radio;
}
KeyStore& keystore () {
return this->kstore;
}
Activity& activity () {
return hal->activity;
}
Message& message () {
return msg;
}
void channels (uint8_t num) {
numChannels = num;
}
uint8_t channels () const {
return numChannels;
}
bool hasChannel (uint8_t number) const {
return number != 0 && number <= channels();
}
bool isRepeat(const Message& m) {
if ( m.isRepeated() && lastdev == m.from() && lastmsg == m.count() ) {
return true;
}
// store last message data
lastdev = m.from();
lastmsg = m.count();
return false;
}
void setHal (HalType& h) {
hal = &h;
}
StorageConfig getConfigArea () {
return StorageConfig(kstore.address() - STORAGE_CFG_START);
}
uint8_t getConfigByte (uint8_t offset) {
uint8_t data = 0;
#ifdef USE_OTA_BOOTLOADER
if ( offset < 16 ) {
HalType::pgm_read(&data, OTA_CONFIG_START + offset, 1);
}
#elif defined(DEVICE_CONFIG)
uint8_t tmp[] = {DEVICE_CONFIG};
if ( offset < sizeof(tmp) ) {
data = tmp[offset];
}
#endif
return data;
}
void getDeviceID (HMID& id) {
uint8_t ids[3];
memcpy_P(ids, info.DeviceID, 3);
id = HMID(ids);
}
void getDeviceSerial (uint8_t* serial) {
memcpy_P(serial, info.Serial, 10);
}
bool isDeviceSerial (const uint8_t* serial) {
uint8_t tmp[10];
getDeviceSerial(tmp);
return memcmp(serial, tmp, 10) == 0;
}
bool isDeviceID(const HMID& id) {
HMID me;
getDeviceID(me);
return id == me;
}
void getDeviceModel (uint8_t* model) {
#ifdef USE_OTA_BOOTLOADER
HalType::pgm_read(model, OTA_MODEL_START, 2);
#else
memcpy_P(model, info.DeviceModel, sizeof(info.DeviceModel));
#endif
}
void getDeviceInfo (uint8_t* di) {
// first byte is number of channels
*di = this->channels();
memcpy_P(di + 1, info.DeviceInfo, sizeof(info.DeviceInfo));
}
HMID getMasterID () {
return list0.masterid();
}
const List0Type& getList0 () {
return list0;
}
bool pollRadio () {
uint8_t num = radio().read(msg);
// minimal msg is 10 byte
// ignore own messages from radio
if ( num >= 10 && isDeviceID(msg.from()) == false ) {
return process(msg);
}
return false;
}
uint8_t nextcount () {
return ++msgcount;
}
virtual void configChanged () {}
virtual bool process(__attribute__((unused)) Message& msg) {
return false;
}
bool isBroadcastMsg(Message msg) {
return (msg.to() == HMID::broadcast && msg.isPairSerial()) || ( msg.isBroadcast() && (msg.isRemoteEvent() || msg.isSensorEvent()) );
}
bool sendFake(Message& msg, const HMID& from) {
msg.to((msg.flags() & Message::BCAST) ? HMID::broadcast : getMasterID());
msg.from(from);
msg.setRpten(); // has to be set always
return send(msg);
}
bool send(Message& msg, const HMID& to) {
msg.to(to);
getDeviceID(msg.from());
msg.setRpten(); // has to be set always
return send(msg);
}
bool send(Message& msg) {
bool result = false;
uint8_t maxsend = list0.transmitDevTryMax();
led().set(LedStates::send);
while ( result == false && maxsend > 0 ) {
result = radio().write(msg, msg.burstRequired());
DPRINT(F("<- "));
msg.dump();
maxsend--;
if ( result == true && msg.ackRequired() == true && msg.to().valid() == true ) {
Message response;
if ( (result = waitResponse(msg, response, 60)) ) { // 600ms
#ifdef USE_AES
if ( response.isChallengeAes() == true ) {
AesChallengeMsg& cm = response.aesChallenge();
result = processChallenge(msg, cm.challenge(), cm.keyindex());
}
else
#endif
{
result = response.isAck();
// if we got a Nack - we stop trying to send again
if ( response.isNack() ) {
maxsend = 0;
}
// we request wakeup
// we got the flag to stay awake
if ( msg.isWakeMeUp() || response.isKeepAwake() ) {
activity().stayAwake(millis2ticks(500));
}
}
}
DPRINT(F("waitAck: ")); DHEX((uint8_t)result); DPRINTLN(F(""));
}
}
if ( result == true ) led().set(LedStates::ack);
else led().set(LedStates::nack);
return result;
}
void sendAck (Message& msg, uint8_t flag = 0x00) {
msg.ack().init(flag);
kstore.addAuth(msg);
send(msg, msg.from());
}
void sendAck2 (Message& msg, uint8_t flag = 0x00) {
msg.ack2().init(flag);
kstore.addAuth(msg);
send(msg, msg.from());
}
void sendNack (Message& msg) {
msg.nack().init();
send(msg, msg.from());
}
template <class ChannelType>
void sendAck (Message& msg, ChannelType& ch, HMID id ) {
msg.ackStatus().init(ch, radio().rssi());
ch.patchStatus(msg);
kstore.addAuth(msg);
sendFake(msg, id);
ch.changed(false);
}
void sendDeviceInfo () {
sendDeviceInfo(getMasterID(), nextcount());
}
void sendDeviceInfo (const HMID& to, uint8_t count) {
DeviceInfoMsg& pm = msg.deviceInfo();
pm.init(to, count);
pm.fill(pgm_read_byte(&info.Firmware), pgm_read_byte(&info.DeviceType));
getDeviceModel(pm.model());
getDeviceSerial(pm.serial());
getDeviceInfo(pm.info());
send(msg, to);
}
void sendSerialInfo (const HMID& to, uint8_t count) {
SerialInfoMsg& pm = msg.serialInfo();
pm.init(to, count);
getDeviceSerial(pm.serial());
send(msg, to);
}
template <class ChannelType>
void sendInfoActuatorStatus (const HMID& to, uint8_t count, ChannelType& ch, bool ack = true) {
InfoActuatorStatusMsg& pm = msg.infoActuatorStatus();
pm.init(count, ch, radio().rssi());
if ( ack == false ) {
pm.clearAck();
}
ch.patchStatus(msg);
send(msg, to);
ch.changed(false);
}
template <class ChannelType>
void sendFakeInfoActuatorStatus (const HMID& from, uint8_t count, ChannelType& ch, bool bcast) {
InfoActuatorStatusMsg& pm = msg.infoActuatorStatus();
pm.init(count, ch, radio().rssi());
if ( bcast == true ) {
pm.clearAck();
pm.setBroadcast();
}
//ch.patchStatus(msg);
sendFake(msg, from);
ch.changed(false);
}
void sendInfoParamResponsePairs(HMID to, uint8_t count, const GenericList& list) {
InfoParamResponsePairsMsg& pm = msg.infoParamResponsePairs();
// setup message for maximal size
pm.init(count);
uint8_t current = 0;
uint8_t* buf = pm.data();
for ( int i = 0; i < list.getSize(); ++i ) {
*buf++ = list.getRegister(i);
*buf++ = list.getByte(i);
current++;
if ( current == 8 ) {
// reset to zero
current = 0;
buf = pm.data();
if ( send(msg, to) == false ) {
// exit loop in case of error
break;
}
}
}
*buf++ = 0;
*buf++ = 0;
current++;
pm.entries(current);
pm.clearAck();
send(msg, to);
}
template <class ChannelType>
void sendInfoPeerList (HMID to, uint8_t count, const ChannelType& channel) {
InfoPeerListMsg& pm = msg.infoPeerList();
// setup message for maximal size
pm.init(count);
uint8_t current = 0;
uint8_t* buf = pm.data();
for ( uint8_t i = 0; i < channel.peers(); ++i ) {
Peer p = channel.peerat(i);
if ( p.valid() == true ) {
memcpy(buf, &p, sizeof(Peer));
buf += sizeof(Peer);
current++;
if ( current == 4 ) {
// reset to zero
current = 0;
buf = pm.data();
if ( send(msg, to) == false ) {
// exit loop in case of error
break;
}
}
}
}
memset(buf, 0, sizeof(Peer));
current++;
pm.entries(current);
pm.clearAck();
send(msg, to);
}
void sendMasterEvent (Message& msg) {
send(msg, getMasterID());
hal->sendPeer();
}
template <class ChannelType>
void sendPeerEvent (Message& msg, const ChannelType& ch) {
bool sendtopeer = false;
for ( int i = 0; i < ch.peers(); ++i ) {
Peer p = ch.peerat(i);
if ( p.valid() == true ) {
// skip if this is not the first peer of that device
if ( ch.peerfor(p) < i ) {
continue;
}
if ( isDeviceID(p) == true ) {
// we send to ourself - no ack needed
getDeviceID(msg.from());
msg.to(msg.from());
if ( msg.ackRequired() == true ) {
msg.clearAck();
this->process(msg);
msg.setAck();
}
else {
this->process(msg);
}
}
else {
// check if burst needed for peer
typename ChannelType::List4 l4 = ch.getList4(p);
msg.burstRequired( l4.burst() );
send(msg, p);
sendtopeer = true;
}
}
}
// if we have no peer - send to master/broadcast
if ( sendtopeer == false ) {
send(msg, getMasterID());
}
// signal that we have send to peer
hal->sendPeer();
}
template <class ChannelType>
void broadcastPeerEvent (Message& msg, const ChannelType& ch) {
getDeviceID(msg.from());
msg.clearAck();
// check if we are peered to ourself
if ( ch.peerfor(msg.from()) < ch.peers() ) {
msg.to(msg.from());
// simply process
this->process(msg);
}
HMID todev;
bool burst = false;
// go over all peers, get first external device
// check if one of the peers needs a burst to wakeup
for ( uint8_t i = 0; i < ch.peers(); ++i ) {
Peer p = ch.peerat(i);
if ( p.valid() == true ) {
if ( msg.from() != p ) {
if ( todev.valid() == false ) {
todev = p;
}
//typename ChannelType::List4 l4 = ch.getList4(p);
//burst |= l4.burst();
}
}
}
// if we have no external device - send to master/broadcast
if ( todev.valid() == false ) {
todev = getMasterID();
}
// DPRINT("BCAST to: ");todev.dump(); DPRINTLN("\n");
msg.burstRequired(burst);
msg.setBroadcast();
send(msg, todev);
// signal that we have send to peer
hal->sendPeer();
}
void writeList (const GenericList& list, const uint8_t* data, uint8_t length) {
for ( uint8_t i = 0; i < length; i += 2, data += 2 ) {
list.writeRegister(*data, *(data + 1));
}
}
bool waitForAck(Message& msg, uint8_t timeout) {
do {
if ( radio().readAck(msg) == true ) {
return true;
}
_delay_ms(10); // wait 10ms
timeout--;
}
while ( timeout > 0 );
return false;
}
bool waitResponse(const Message& msg, Message& response, uint8_t timeout) {
do {
uint8_t num = radio().read(response);
if ( num > 0 ) {
DPRINT(F("-> ")); response.dump();
if ( msg.count() == response.count() &&
msg.to() == response.from() ) {
return true;
}
}
_delay_ms(10); // wait 10ms
timeout--;
}
while ( timeout > 0 );
return false;
}
#ifdef USE_AES
void sendAckAes (Message& msg, const uint8_t* data) {
msg.ackAes().init(data);
send(msg, msg.from());
}
bool requestSignature(const Message& msg) {
// no signature for internal message processing needed
if ( isDeviceID(msg.from()) == true ) {
return true;
}
// signing only possible if sender requests ACK
if ( msg.ackRequired() == true ) {
AesChallengeMsg signmsg;
signmsg.init(msg, kstore.getIndex());
kstore.challengeKey(signmsg.challenge(), kstore.getIndex());
// TODO re-send message handling
DPRINT(F("<- ")); signmsg.dump();
radio().write(signmsg, signmsg.burstRequired());
// read answer
if ( waitForAesResponse(msg.from(), signmsg, 60) == true ) {
AesResponseMsg& response = signmsg.aesResponse();
// DPRINT("AES ");DHEX(response.data(),16);
// fill initial vector with message to sign
kstore.fillInitVector(msg);
// DPRINT("IV ");DHEX(iv,16);
// decrypt response
uint8_t* data = response.data();
aes128_dec(data, &kstore.ctx);
// xor encrypted data with initial vector
kstore.applyVector(data);
// store data for sending ack
kstore.storeAuth(response.count(), data);
// decrypt response
aes128_dec(data, &kstore.ctx);
// DPRINT("r "); DHEX(response.data()+6,10);
// DPRINT("s "); DHEX(msg.buffer(),10);
// compare decrypted message with original message
if ( memcmp(data + 6, msg.buffer(), 10) == 0 ) {
DPRINTLN(F("Signature OK"));
return true;
}
else {
DPRINTLN(F("Signature FAILED"));
}
}
else {
DPRINTLN(F("waitForAesResponse failed"));
}
}
return false;
}
bool processChallenge(const Message& msg, const uint8_t* challenge, uint8_t keyidx) {
if ( kstore.challengeKey(challenge, keyidx) == true ) {
DPRINT("Process Challenge - Key: "); DHEXLN(keyidx);
AesResponseMsg answer;
answer.init(msg);
// fill initial vector with message to sign
kstore.fillInitVector(msg);
uint8_t* data = answer.data();
for ( uint8_t i = 0; i < 6; ++i ) {
data[i] = (uint8_t)rand();
}
memcpy(data + 6, msg.buffer(), 10); // TODO - check message to short possible
aes128_enc(data, &kstore.ctx);
kstore.applyVector(data);
aes128_enc(data, &kstore.ctx);
return send(answer, msg.to());
}
return false;
}
bool waitForAesResponse(const HMID& from, Message& answer, uint8_t timeout) {
do {
uint8_t num = radio().read(answer);
if ( num > 0 ) {
DPRINT(F("-> ")); answer.dump();
if ( answer.isResponseAes() && from == answer.from() ) {
return true;
}
}
_delay_ms(10); // wait 10ms
timeout--;
}
while ( timeout > 0 );
return false;
}
#endif
};
}
#endif