Skip to content

Latest commit

 

History

History
397 lines (286 loc) · 13.7 KB

README.md

File metadata and controls

397 lines (286 loc) · 13.7 KB

StanfordNLPRESTAPI

Build status Coverage Status License (GPL version 3)

Introduction

This repository offer a REST API over Stanford CoreNLP framework to get results in NIF format. The REST API is created via Dropwizard. The system can handle multiple languages:

  • English
  • French
  • Chinese
  • German
  • Arabic
  • Spanish

Libraries

  • Stanford CoreNLP 3.8.0
  • Dropwizard 1.2.0
  • Jena 3.4.0

Requirements

Java 1.8 and Maven 3.0.5 minimum. Docker (1.6 or later) is optional. The progressbar2 python package to set up the environment.

Set up the environment

In order to be able to run StanfordNLPRESTAPI you need to set up the environment by downloading the models, gazetteers and properties by running the following command line:

python setupenv.py

Maven

This section is about how to use maven to compile and execute the tests.

Compilation

To compile StanfordNLPRESTAPI, use the following Maven command:

mvn -U clean package

The fat JAR will be available in the target directory.

Tests

To run the unit tests, use the following Maven command:

mvn clean test

Usage

usage: java -jar stanfordNLPRESTAPI-4.1.1-SNAPSHOT.jar
       [-h] [-v] {server,check,pos,ner,tokenize,coref,date,number,gazetteer} ...

positional arguments:
  {server,check,pos,ner,tokenize,coref,date,number,gazetteer}
                         available commands

optional arguments:
  -h, --help             show this help message and exit
  -v, --version          show the application version and exit

There is two ways to use this wrapper: via a REST API or via CLI. The output is in RDF Turtle or JSON-LD format on both CLI and Web Service modes

CLI

The first way is via CLI with six possible sub-commands, ner, pos, tokenize, coref, date and number.

NER

To use the ner CLI:

usage: java -jar stanfordNLPRESTAPI-4.1.1-SNAPSHOT.jar
       ner [-s] [-o OFILE] [-l] [-h] (-t TEXT | -i IFILE | -u URL) [file]

NER command on text

positional arguments:
  file                   application configuration file

optional arguments:
  -s, --setting          Select the setting (default: none)
  -o OFILE, --output-file OFILE
                         Output file name which will contain the annotations
  -l, --lang
                         Select the language (default: en)
  -h, --help             show this help message and exit

inputs:
  -t TEXT, --text TEXT   text to analyse
  -i IFILE, --input-file IFILE
                         Input file name which contain the text to process
  -u URL, --url URL      URL to process

POS

To use the pos CLI:

usage: java -jar stanfordNLPRESTAPI-4.1.1-SNAPSHOT.jar
       pos [-s] [-o OFILE] [-l] [-h] (-t TEXT | -i IFILE | -u URL) [file]

POS command on text

positional arguments:
  file                   application configuration file

optional arguments:
  -s, --setting          Select the setting (default: none)
  -o OFILE, --output-file OFILE
                         Output file name which will contain the annotations
  -l, --lang
                         Select the language (default: en)
  -h, --help             show this help message and exit

inputs:
  -t TEXT, --text TEXT   text to analyse
  -i IFILE, --input-file IFILE
                         Input file name which contain the text to process
  -u URL, --url URL      URL to process

Tokenize

To use the tokenize CLI:

usage: java -jar stanfordNLPRESTAPI-4.1.1-SNAPSHOT.jar
       tokenize [-s] [-o OFILE] [-l] [-h] (-t TEXT | -i IFILE | -u URL) [file]

Tokenize command on text

positional arguments:
  file                   application configuration file

optional arguments:
  -s, --setting          Select the setting (default: none)
  -o OFILE, --output-file OFILE
                         Output file name which will contain the annotations
  -l, --lang
                         Select the language (default: en)
  -h, --help             show this help message and exit

inputs:
  -t TEXT, --text TEXT   text to analyse
  -i IFILE, --input-file IFILE
                         Input file name which contain the text to process
  -u URL, --url URL      URL to process

Coref

To use the coref CLI:

usage: java -jar stanfordNLPRESTAPI-4.1.1-SNAPSHOT.jar
       coref [-s] [-o OFILE] [-l] [-h] (-t TEXT | -i IFILE | -u URL) [file]

Coref command on text

positional arguments:
  file                   application configuration file

optional arguments:
  -s, --setting          Select the setting (default: none)
  -o OFILE, --output-file OFILE
                         Output file name which will contain the annotations
  -l, --lang
                         Select the language (default: en)
  -h, --help             show this help message and exit

inputs:
  -t TEXT, --text TEXT   text to analyse
  -i IFILE, --input-file IFILE
                         Input file name which contain the text to process
  -u URL, --url URL      URL to process

Date

To use the date CLI:

usage: java -jar stanfordNLPRESTAPI-4.1.1-SNAPSHOT.jar
       date [-s] [-o OFILE] [-l] [-h] (-t TEXT | -i IFILE | -u URL) [file]

Date command on text

positional arguments:
  file                   application configuration file

optional arguments:
  -s, --setting          Select the setting (default: none)
  -o OFILE, --output-file OFILE
                         Output file name which will contain the annotations
  -l, --lang
                         Select the language (default: en)
  -h, --help             show this help message and exit

inputs:
  -t TEXT, --text TEXT   text to analyse
  -i IFILE, --input-file IFILE
                         Input file name which contain the text to process
  -u URL, --url URL      URL to process

Number

To use the number CLI:

usage: java -jar stanfordNLPRESTAPI-4.1.1-SNAPSHOT.jar
       number [-s] [-o OFILE] [-l] [-h] (-t TEXT | -i IFILE | -u URL) [file]

Number command on text

positional arguments:
  file                   application configuration file

optional arguments:
  -s, --setting          Select the setting (default: none)
  -o OFILE, --output-file OFILE
                         Output file name which will contain the annotations
  -l, --lang
                         Select the language (default: en)
  -h, --help             show this help message and exit

inputs:
  -t TEXT, --text TEXT   text to analyse
  -i IFILE, --input-file IFILE
                         Input file name which contain the text to process
  -u URL, --url URL      URL to process

Gazetteer

To use the gazetteer CLI:

usage: java -jar stanfordNLPRESTAPI-4.1.1-SNAPSHOT.jar
       gazetteer [-s] [-o OFILE] [-l] [-h] (-t TEXT | -i IFILE | -u URL) [file]

Gazetteer command on text

positional arguments:
  file                   application configuration file

optional arguments:
  -s, --setting          Select the setting (default: none)
  -o OFILE, --output-file OFILE
                         Output file name which will contain the annotations
  -l, --lang
                         Select the language (default: en)
  -h, --help             show this help message and exit

inputs:
  -t TEXT, --text TEXT   text to analyse
  -i IFILE, --input-file IFILE
                         Input file name which contain the text to process
  -u URL, --url URL      URL to process

Web Service

The second way is via a Web service:

usage: java -jar stanfordNLPRESTAPI-4.1.1-SNAPSHOT.jar
       server [-h] [file]

Runs the Dropwizard application as an HTTP server

positional arguments:
  file                   application configuration file

optional arguments:
  -h, --help             show this help message and exit

The format in the HTTP header is respectively text/turtle;charset=utf-8 for RDF Turtle and application/json;charset=utf-8 in case of errors and when the method profiles is queried. The documentation for the API is available on the wiki.

Docker

It is possible to deploy StanfordNLPRESTAPI as a container via Docker. First, be sure to have compiled StanfordNLPRESTAPI. Next, for deploying the app as a container you have to build the Docker image:

docker build -t jplu/java github.com/jplu/docker-java
mvn docker:build

Once the image is built, it is possible to run it with:

docker run -d -p 7000:7000 -p 7001:7001 -v $PWD/gazetteers:/maven/gazetteers -v $PWD/models:/maven/models -v $PWD/properties:/maven/properties -v $PWD/conf:/maven/conf --name stanfordapi jplu/stanford-nlp-rest-api:4.1.1-SNAPSHOT

Or with:

mvn docker:start

The container needs at most 5 minutes (depending of the power of your machine) to be up because of the loading of all the models of Stanford CoreNLP.

Configuration

The CLI commands and the Web service use the same configuration file.

Create a New Profile

In order to create your own Stanford CoreNLP settings you need to put your properties file into the folder properties and you must respect the following naming extractor_language_name. Where extractor is one among: pos, ner, tokenize, coref, date, number or gazetteer. Next, language must be the language for which Stanford CoreNLP will be set, and name is the name you want to give to this setting.

Used Models

This application contains by default all the models provided by Stanford CoreNLP team. In case you want to add models you will have to download and put them in the models folder. You can also download the jar files provided by Stanford with models for other languages. To use them you will have to include them in the CLASSPATH. We provide two models:

  • OKE2015 [1]: NER model trained with the OKE2015 challenge training dataset.
  • OKE2016 [2]: NER model trained with the OKE2016 challenge training dataset.
  • OKE2017_1 [8]: NER model trained with the OKE2017 Task 1 challenge training dataset.
  • OKE2017_2 [8]: NER model trained with the OKE2017 Task 2 challenge training dataset.
  • OKE2017_3 [8]: NER model trained with the OKE2017 Task 3 challenge training dataset.
  • NEEL2015 [3][4]: NER model for tweets trained with the NEEL2015 challenge training dataset.
  • NEEL2016 [3][4][5]: NER model for tweets trained with the NEEL2016 challenge training dataset.
  • gate-EN-twitter [6]: POS tagger model for tagging tweets.
  • ETAPE [7]: NER model trained with the ETAPE challenge training dataset.

How to contribute

In case you want to contribute, please read the CONTRIBUTING file.

Opening an issue

If you find a bug, have trouble following the documentation or have a question about the project you can create an issue. There’s nothing to it and whatever issue you’re having, you’re likely not the only one, so others will find your issue helpful, too. To open an issue:

  • Please, check before to see if not someone else has already had the same issue.
  • Be clear in detailing how to reproduce the bug.
  • Include system details.
  • In case it is an error, paste the error output.

Team

Owner: Julien Plu (@jplu)

Maintainers and Collaborators:

License

All the content of this repository is licensed under the terms of the GPL v3 license.

References

  • [1]: Plu J., Rizzo G., Troncy R. (2015) A Hybrid Approach for Entity Recognition and Linking. In: 12th European Semantic Web Conference (ESWC'15), Open Extraction Challenge, Portoroz, Slovenia.
  • [2]: Plu J., Rizzo G., Troncy R. (2016) Enhancing Entity Linking by Combining NER Models. In: 13th Extended Semantic Web Conference (ESWC'16), Challenges Track, Heraklion, Greece.
  • [3]: Cano A.E., Rizzo G., Varga A., Rowe M., Stankovic M., Dadzie A.S. (2014) Making Sense of Microposts (#Microposts2014) Named Entity Extraction & Linking Challenge. In (WWW'14),4th International Workshop on Making Sense of Microposts (#Microposts'14), Seoul, Korea.
  • [4]: Rizzo G., Cano A.E., Pereira B., Varga A. (2015) Making Sense of Microposts (#Microposts2015) Named Entity rEcognition & Linking Challenge. In (WWW'15), 5th International Workshop on Making Sense of Microposts (#Microposts'15), Florence, Italy.
  • [5]: Rizzo G., van Erp M., Plu J., Troncy R. (2015) NEEL 2016: Named Entity rEcognition & Linking Challenge Report. In (WWW'16), 6th International Workshop on Making Sense of Microposts (#Microposts'16), Montréal, Québec, Canada.
  • [6]: Derczynski L., Ritter A., Clark S., Bontcheva K. (2013) Twitter Part-of-Speech Tagging for All: Overcoming Sparse and Noisy Data. In: Association for Computational Linguistics (ACL'13), Sofia, Bulgaria
  • [7]: Gravier G., Adda G., Paulsson N., Carré M., Giraudel A., Galibert O. (2012) The ETAPE corpus for the evaluation of speech-based TV content processing in the French language.
  • [8]: Plu J., Troncy R., Rizzo G. (2017) ADEL@OKE 2017: A Generic Method for Indexing Knowlege Bases for Entity Linking. In: 14th European Semantic Web Conference (ESWC'17), Open Extraction Challenge, Portoroz, Slovenia.