-
Notifications
You must be signed in to change notification settings - Fork 486
/
Copy pathVec3.inl
860 lines (787 loc) · 22.9 KB
/
Vec3.inl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
// Jolt Physics Library (https://github.com/jrouwe/JoltPhysics)
// SPDX-FileCopyrightText: 2021 Jorrit Rouwe
// SPDX-License-Identifier: MIT
#include <Jolt/Math/Vec4.h>
#include <Jolt/Math/UVec4.h>
#include <Jolt/Core/HashCombine.h>
JPH_SUPPRESS_WARNINGS_STD_BEGIN
#include <random>
JPH_SUPPRESS_WARNINGS_STD_END
// Create a std::hash/JPH::Hash for Vec3
JPH_MAKE_HASHABLE(JPH::Vec3, t.GetX(), t.GetY(), t.GetZ())
JPH_NAMESPACE_BEGIN
void Vec3::CheckW() const
{
#ifdef JPH_FLOATING_POINT_EXCEPTIONS_ENABLED
// Avoid asserts when both components are NaN
JPH_ASSERT(reinterpret_cast<const uint32 *>(mF32)[2] == reinterpret_cast<const uint32 *>(mF32)[3]);
#endif // JPH_FLOATING_POINT_EXCEPTIONS_ENABLED
}
JPH_INLINE Vec3::Type Vec3::sFixW(Type inValue)
{
#ifdef JPH_FLOATING_POINT_EXCEPTIONS_ENABLED
#if defined(JPH_USE_SSE)
return _mm_shuffle_ps(inValue, inValue, _MM_SHUFFLE(2, 2, 1, 0));
#elif defined(JPH_USE_NEON)
return JPH_NEON_SHUFFLE_F32x4(inValue, inValue, 0, 1, 2, 2);
#else
Type value;
value.mData[0] = inValue.mData[0];
value.mData[1] = inValue.mData[1];
value.mData[2] = inValue.mData[2];
value.mData[3] = inValue.mData[2];
return value;
#endif
#else
return inValue;
#endif // JPH_FLOATING_POINT_EXCEPTIONS_ENABLED
}
Vec3::Vec3(Vec4Arg inRHS) :
mValue(sFixW(inRHS.mValue))
{
}
Vec3::Vec3(const Float3 &inV)
{
#if defined(JPH_USE_SSE)
Type x = _mm_load_ss(&inV.x);
Type y = _mm_load_ss(&inV.y);
Type z = _mm_load_ss(&inV.z);
Type xy = _mm_unpacklo_ps(x, y);
mValue = _mm_shuffle_ps(xy, z, _MM_SHUFFLE(0, 0, 1, 0)); // Assure Z and W are the same
#elif defined(JPH_USE_NEON)
float32x2_t xy = vld1_f32(&inV.x);
float32x2_t zz = vdup_n_f32(inV.z); // Assure Z and W are the same
mValue = vcombine_f32(xy, zz);
#else
mF32[0] = inV[0];
mF32[1] = inV[1];
mF32[2] = inV[2];
mF32[3] = inV[2]; // Not strictly needed when JPH_FLOATING_POINT_EXCEPTIONS_ENABLED is off but prevents warnings about uninitialized variables
#endif
}
Vec3::Vec3(float inX, float inY, float inZ)
{
#if defined(JPH_USE_SSE)
mValue = _mm_set_ps(inZ, inZ, inY, inX);
#elif defined(JPH_USE_NEON)
uint32x2_t xy = vcreate_u32(static_cast<uint64>(BitCast<uint32>(inX)) | (static_cast<uint64>(BitCast<uint32>(inY)) << 32));
uint32x2_t zz = vreinterpret_u32_f32(vdup_n_f32(inZ));
mValue = vreinterpretq_f32_u32(vcombine_u32(xy, zz));
#else
mF32[0] = inX;
mF32[1] = inY;
mF32[2] = inZ;
mF32[3] = inZ; // Not strictly needed when JPH_FLOATING_POINT_EXCEPTIONS_ENABLED is off but prevents warnings about uninitialized variables
#endif
}
template<uint32 SwizzleX, uint32 SwizzleY, uint32 SwizzleZ>
Vec3 Vec3::Swizzle() const
{
static_assert(SwizzleX <= 3, "SwizzleX template parameter out of range");
static_assert(SwizzleY <= 3, "SwizzleY template parameter out of range");
static_assert(SwizzleZ <= 3, "SwizzleZ template parameter out of range");
#if defined(JPH_USE_SSE)
return _mm_shuffle_ps(mValue, mValue, _MM_SHUFFLE(SwizzleZ, SwizzleZ, SwizzleY, SwizzleX)); // Assure Z and W are the same
#elif defined(JPH_USE_NEON)
return JPH_NEON_SHUFFLE_F32x4(mValue, mValue, SwizzleX, SwizzleY, SwizzleZ, SwizzleZ);
#else
return Vec3(mF32[SwizzleX], mF32[SwizzleY], mF32[SwizzleZ]);
#endif
}
Vec3 Vec3::sZero()
{
#if defined(JPH_USE_SSE)
return _mm_setzero_ps();
#elif defined(JPH_USE_NEON)
return vdupq_n_f32(0);
#else
return Vec3(0, 0, 0);
#endif
}
Vec3 Vec3::sReplicate(float inV)
{
#if defined(JPH_USE_SSE)
return _mm_set1_ps(inV);
#elif defined(JPH_USE_NEON)
return vdupq_n_f32(inV);
#else
return Vec3(inV, inV, inV);
#endif
}
Vec3 Vec3::sOne()
{
return sReplicate(1.0f);
}
Vec3 Vec3::sNaN()
{
return sReplicate(numeric_limits<float>::quiet_NaN());
}
Vec3 Vec3::sLoadFloat3Unsafe(const Float3 &inV)
{
#if defined(JPH_USE_SSE)
Type v = _mm_loadu_ps(&inV.x);
#elif defined(JPH_USE_NEON)
Type v = vld1q_f32(&inV.x);
#else
Type v = { inV.x, inV.y, inV.z };
#endif
return sFixW(v);
}
Vec3 Vec3::sMin(Vec3Arg inV1, Vec3Arg inV2)
{
#if defined(JPH_USE_SSE)
return _mm_min_ps(inV1.mValue, inV2.mValue);
#elif defined(JPH_USE_NEON)
return vminq_f32(inV1.mValue, inV2.mValue);
#else
return Vec3(min(inV1.mF32[0], inV2.mF32[0]),
min(inV1.mF32[1], inV2.mF32[1]),
min(inV1.mF32[2], inV2.mF32[2]));
#endif
}
Vec3 Vec3::sMax(Vec3Arg inV1, Vec3Arg inV2)
{
#if defined(JPH_USE_SSE)
return _mm_max_ps(inV1.mValue, inV2.mValue);
#elif defined(JPH_USE_NEON)
return vmaxq_f32(inV1.mValue, inV2.mValue);
#else
return Vec3(max(inV1.mF32[0], inV2.mF32[0]),
max(inV1.mF32[1], inV2.mF32[1]),
max(inV1.mF32[2], inV2.mF32[2]));
#endif
}
Vec3 Vec3::sClamp(Vec3Arg inV, Vec3Arg inMin, Vec3Arg inMax)
{
return sMax(sMin(inV, inMax), inMin);
}
UVec4 Vec3::sEquals(Vec3Arg inV1, Vec3Arg inV2)
{
#if defined(JPH_USE_SSE)
return _mm_castps_si128(_mm_cmpeq_ps(inV1.mValue, inV2.mValue));
#elif defined(JPH_USE_NEON)
return vceqq_f32(inV1.mValue, inV2.mValue);
#else
uint32 z = inV1.mF32[2] == inV2.mF32[2]? 0xffffffffu : 0;
return UVec4(inV1.mF32[0] == inV2.mF32[0]? 0xffffffffu : 0,
inV1.mF32[1] == inV2.mF32[1]? 0xffffffffu : 0,
z,
z);
#endif
}
UVec4 Vec3::sLess(Vec3Arg inV1, Vec3Arg inV2)
{
#if defined(JPH_USE_SSE)
return _mm_castps_si128(_mm_cmplt_ps(inV1.mValue, inV2.mValue));
#elif defined(JPH_USE_NEON)
return vcltq_f32(inV1.mValue, inV2.mValue);
#else
uint32 z = inV1.mF32[2] < inV2.mF32[2]? 0xffffffffu : 0;
return UVec4(inV1.mF32[0] < inV2.mF32[0]? 0xffffffffu : 0,
inV1.mF32[1] < inV2.mF32[1]? 0xffffffffu : 0,
z,
z);
#endif
}
UVec4 Vec3::sLessOrEqual(Vec3Arg inV1, Vec3Arg inV2)
{
#if defined(JPH_USE_SSE)
return _mm_castps_si128(_mm_cmple_ps(inV1.mValue, inV2.mValue));
#elif defined(JPH_USE_NEON)
return vcleq_f32(inV1.mValue, inV2.mValue);
#else
uint32 z = inV1.mF32[2] <= inV2.mF32[2]? 0xffffffffu : 0;
return UVec4(inV1.mF32[0] <= inV2.mF32[0]? 0xffffffffu : 0,
inV1.mF32[1] <= inV2.mF32[1]? 0xffffffffu : 0,
z,
z);
#endif
}
UVec4 Vec3::sGreater(Vec3Arg inV1, Vec3Arg inV2)
{
#if defined(JPH_USE_SSE)
return _mm_castps_si128(_mm_cmpgt_ps(inV1.mValue, inV2.mValue));
#elif defined(JPH_USE_NEON)
return vcgtq_f32(inV1.mValue, inV2.mValue);
#else
uint32 z = inV1.mF32[2] > inV2.mF32[2]? 0xffffffffu : 0;
return UVec4(inV1.mF32[0] > inV2.mF32[0]? 0xffffffffu : 0,
inV1.mF32[1] > inV2.mF32[1]? 0xffffffffu : 0,
z,
z);
#endif
}
UVec4 Vec3::sGreaterOrEqual(Vec3Arg inV1, Vec3Arg inV2)
{
#if defined(JPH_USE_SSE)
return _mm_castps_si128(_mm_cmpge_ps(inV1.mValue, inV2.mValue));
#elif defined(JPH_USE_NEON)
return vcgeq_f32(inV1.mValue, inV2.mValue);
#else
uint32 z = inV1.mF32[2] >= inV2.mF32[2]? 0xffffffffu : 0;
return UVec4(inV1.mF32[0] >= inV2.mF32[0]? 0xffffffffu : 0,
inV1.mF32[1] >= inV2.mF32[1]? 0xffffffffu : 0,
z,
z);
#endif
}
Vec3 Vec3::sFusedMultiplyAdd(Vec3Arg inMul1, Vec3Arg inMul2, Vec3Arg inAdd)
{
#if defined(JPH_USE_SSE)
#ifdef JPH_USE_FMADD
return _mm_fmadd_ps(inMul1.mValue, inMul2.mValue, inAdd.mValue);
#else
return _mm_add_ps(_mm_mul_ps(inMul1.mValue, inMul2.mValue), inAdd.mValue);
#endif
#elif defined(JPH_USE_NEON)
return vmlaq_f32(inAdd.mValue, inMul1.mValue, inMul2.mValue);
#else
return Vec3(inMul1.mF32[0] * inMul2.mF32[0] + inAdd.mF32[0],
inMul1.mF32[1] * inMul2.mF32[1] + inAdd.mF32[1],
inMul1.mF32[2] * inMul2.mF32[2] + inAdd.mF32[2]);
#endif
}
Vec3 Vec3::sSelect(Vec3Arg inNotSet, Vec3Arg inSet, UVec4Arg inControl)
{
#if defined(JPH_USE_SSE4_1) && !defined(JPH_PLATFORM_WASM) // _mm_blendv_ps has problems on FireFox
Type v = _mm_blendv_ps(inNotSet.mValue, inSet.mValue, _mm_castsi128_ps(inControl.mValue));
return sFixW(v);
#elif defined(JPH_USE_SSE)
__m128 is_set = _mm_castsi128_ps(_mm_srai_epi32(inControl.mValue, 31));
Type v = _mm_or_ps(_mm_and_ps(is_set, inSet.mValue), _mm_andnot_ps(is_set, inNotSet.mValue));
return sFixW(v);
#elif defined(JPH_USE_NEON)
Type v = vbslq_f32(vreinterpretq_u32_s32(vshrq_n_s32(vreinterpretq_s32_u32(inControl.mValue), 31)), inSet.mValue, inNotSet.mValue);
return sFixW(v);
#else
Vec3 result;
for (int i = 0; i < 3; i++)
result.mF32[i] = (inControl.mU32[i] & 0x80000000u) ? inSet.mF32[i] : inNotSet.mF32[i];
#ifdef JPH_FLOATING_POINT_EXCEPTIONS_ENABLED
result.mF32[3] = result.mF32[2];
#endif // JPH_FLOATING_POINT_EXCEPTIONS_ENABLED
return result;
#endif
}
Vec3 Vec3::sOr(Vec3Arg inV1, Vec3Arg inV2)
{
#if defined(JPH_USE_SSE)
return _mm_or_ps(inV1.mValue, inV2.mValue);
#elif defined(JPH_USE_NEON)
return vreinterpretq_f32_u32(vorrq_u32(vreinterpretq_u32_f32(inV1.mValue), vreinterpretq_u32_f32(inV2.mValue)));
#else
return Vec3(UVec4::sOr(inV1.ReinterpretAsInt(), inV2.ReinterpretAsInt()).ReinterpretAsFloat());
#endif
}
Vec3 Vec3::sXor(Vec3Arg inV1, Vec3Arg inV2)
{
#if defined(JPH_USE_SSE)
return _mm_xor_ps(inV1.mValue, inV2.mValue);
#elif defined(JPH_USE_NEON)
return vreinterpretq_f32_u32(veorq_u32(vreinterpretq_u32_f32(inV1.mValue), vreinterpretq_u32_f32(inV2.mValue)));
#else
return Vec3(UVec4::sXor(inV1.ReinterpretAsInt(), inV2.ReinterpretAsInt()).ReinterpretAsFloat());
#endif
}
Vec3 Vec3::sAnd(Vec3Arg inV1, Vec3Arg inV2)
{
#if defined(JPH_USE_SSE)
return _mm_and_ps(inV1.mValue, inV2.mValue);
#elif defined(JPH_USE_NEON)
return vreinterpretq_f32_u32(vandq_u32(vreinterpretq_u32_f32(inV1.mValue), vreinterpretq_u32_f32(inV2.mValue)));
#else
return Vec3(UVec4::sAnd(inV1.ReinterpretAsInt(), inV2.ReinterpretAsInt()).ReinterpretAsFloat());
#endif
}
Vec3 Vec3::sUnitSpherical(float inTheta, float inPhi)
{
Vec4 s, c;
Vec4(inTheta, inPhi, 0, 0).SinCos(s, c);
return Vec3(s.GetX() * c.GetY(), s.GetX() * s.GetY(), c.GetX());
}
template <class Random>
Vec3 Vec3::sRandom(Random &inRandom)
{
std::uniform_real_distribution<float> zero_to_one(0.0f, 1.0f);
float theta = JPH_PI * zero_to_one(inRandom);
float phi = 2.0f * JPH_PI * zero_to_one(inRandom);
return sUnitSpherical(theta, phi);
}
bool Vec3::operator == (Vec3Arg inV2) const
{
return sEquals(*this, inV2).TestAllXYZTrue();
}
bool Vec3::IsClose(Vec3Arg inV2, float inMaxDistSq) const
{
return (inV2 - *this).LengthSq() <= inMaxDistSq;
}
bool Vec3::IsNearZero(float inMaxDistSq) const
{
return LengthSq() <= inMaxDistSq;
}
Vec3 Vec3::operator * (Vec3Arg inV2) const
{
#if defined(JPH_USE_SSE)
return _mm_mul_ps(mValue, inV2.mValue);
#elif defined(JPH_USE_NEON)
return vmulq_f32(mValue, inV2.mValue);
#else
return Vec3(mF32[0] * inV2.mF32[0], mF32[1] * inV2.mF32[1], mF32[2] * inV2.mF32[2]);
#endif
}
Vec3 Vec3::operator * (float inV2) const
{
#if defined(JPH_USE_SSE)
return _mm_mul_ps(mValue, _mm_set1_ps(inV2));
#elif defined(JPH_USE_NEON)
return vmulq_n_f32(mValue, inV2);
#else
return Vec3(mF32[0] * inV2, mF32[1] * inV2, mF32[2] * inV2);
#endif
}
Vec3 operator * (float inV1, Vec3Arg inV2)
{
#if defined(JPH_USE_SSE)
return _mm_mul_ps(_mm_set1_ps(inV1), inV2.mValue);
#elif defined(JPH_USE_NEON)
return vmulq_n_f32(inV2.mValue, inV1);
#else
return Vec3(inV1 * inV2.mF32[0], inV1 * inV2.mF32[1], inV1 * inV2.mF32[2]);
#endif
}
Vec3 Vec3::operator / (float inV2) const
{
#if defined(JPH_USE_SSE)
return _mm_div_ps(mValue, _mm_set1_ps(inV2));
#elif defined(JPH_USE_NEON)
return vdivq_f32(mValue, vdupq_n_f32(inV2));
#else
return Vec3(mF32[0] / inV2, mF32[1] / inV2, mF32[2] / inV2);
#endif
}
Vec3 &Vec3::operator *= (float inV2)
{
#if defined(JPH_USE_SSE)
mValue = _mm_mul_ps(mValue, _mm_set1_ps(inV2));
#elif defined(JPH_USE_NEON)
mValue = vmulq_n_f32(mValue, inV2);
#else
for (int i = 0; i < 3; ++i)
mF32[i] *= inV2;
#ifdef JPH_FLOATING_POINT_EXCEPTIONS_ENABLED
mF32[3] = mF32[2];
#endif
#endif
return *this;
}
Vec3 &Vec3::operator *= (Vec3Arg inV2)
{
#if defined(JPH_USE_SSE)
mValue = _mm_mul_ps(mValue, inV2.mValue);
#elif defined(JPH_USE_NEON)
mValue = vmulq_f32(mValue, inV2.mValue);
#else
for (int i = 0; i < 3; ++i)
mF32[i] *= inV2.mF32[i];
#ifdef JPH_FLOATING_POINT_EXCEPTIONS_ENABLED
mF32[3] = mF32[2];
#endif
#endif
return *this;
}
Vec3 &Vec3::operator /= (float inV2)
{
#if defined(JPH_USE_SSE)
mValue = _mm_div_ps(mValue, _mm_set1_ps(inV2));
#elif defined(JPH_USE_NEON)
mValue = vdivq_f32(mValue, vdupq_n_f32(inV2));
#else
for (int i = 0; i < 3; ++i)
mF32[i] /= inV2;
#ifdef JPH_FLOATING_POINT_EXCEPTIONS_ENABLED
mF32[3] = mF32[2];
#endif
#endif
return *this;
}
Vec3 Vec3::operator + (Vec3Arg inV2) const
{
#if defined(JPH_USE_SSE)
return _mm_add_ps(mValue, inV2.mValue);
#elif defined(JPH_USE_NEON)
return vaddq_f32(mValue, inV2.mValue);
#else
return Vec3(mF32[0] + inV2.mF32[0], mF32[1] + inV2.mF32[1], mF32[2] + inV2.mF32[2]);
#endif
}
Vec3 &Vec3::operator += (Vec3Arg inV2)
{
#if defined(JPH_USE_SSE)
mValue = _mm_add_ps(mValue, inV2.mValue);
#elif defined(JPH_USE_NEON)
mValue = vaddq_f32(mValue, inV2.mValue);
#else
for (int i = 0; i < 3; ++i)
mF32[i] += inV2.mF32[i];
#ifdef JPH_FLOATING_POINT_EXCEPTIONS_ENABLED
mF32[3] = mF32[2];
#endif
#endif
return *this;
}
Vec3 Vec3::operator - () const
{
#if defined(JPH_USE_SSE)
return _mm_sub_ps(_mm_setzero_ps(), mValue);
#elif defined(JPH_USE_NEON)
#ifdef JPH_CROSS_PLATFORM_DETERMINISTIC
return vsubq_f32(vdupq_n_f32(0), mValue);
#else
return vnegq_f32(mValue);
#endif
#else
#ifdef JPH_CROSS_PLATFORM_DETERMINISTIC
return Vec3(0.0f - mF32[0], 0.0f - mF32[1], 0.0f - mF32[2]);
#else
return Vec3(-mF32[0], -mF32[1], -mF32[2]);
#endif
#endif
}
Vec3 Vec3::operator - (Vec3Arg inV2) const
{
#if defined(JPH_USE_SSE)
return _mm_sub_ps(mValue, inV2.mValue);
#elif defined(JPH_USE_NEON)
return vsubq_f32(mValue, inV2.mValue);
#else
return Vec3(mF32[0] - inV2.mF32[0], mF32[1] - inV2.mF32[1], mF32[2] - inV2.mF32[2]);
#endif
}
Vec3 &Vec3::operator -= (Vec3Arg inV2)
{
#if defined(JPH_USE_SSE)
mValue = _mm_sub_ps(mValue, inV2.mValue);
#elif defined(JPH_USE_NEON)
mValue = vsubq_f32(mValue, inV2.mValue);
#else
for (int i = 0; i < 3; ++i)
mF32[i] -= inV2.mF32[i];
#ifdef JPH_FLOATING_POINT_EXCEPTIONS_ENABLED
mF32[3] = mF32[2];
#endif
#endif
return *this;
}
Vec3 Vec3::operator / (Vec3Arg inV2) const
{
inV2.CheckW(); // Check W equals Z to avoid div by zero
#if defined(JPH_USE_SSE)
return _mm_div_ps(mValue, inV2.mValue);
#elif defined(JPH_USE_NEON)
return vdivq_f32(mValue, inV2.mValue);
#else
return Vec3(mF32[0] / inV2.mF32[0], mF32[1] / inV2.mF32[1], mF32[2] / inV2.mF32[2]);
#endif
}
Vec4 Vec3::SplatX() const
{
#if defined(JPH_USE_SSE)
return _mm_shuffle_ps(mValue, mValue, _MM_SHUFFLE(0, 0, 0, 0));
#elif defined(JPH_USE_NEON)
return vdupq_laneq_f32(mValue, 0);
#else
return Vec4(mF32[0], mF32[0], mF32[0], mF32[0]);
#endif
}
Vec4 Vec3::SplatY() const
{
#if defined(JPH_USE_SSE)
return _mm_shuffle_ps(mValue, mValue, _MM_SHUFFLE(1, 1, 1, 1));
#elif defined(JPH_USE_NEON)
return vdupq_laneq_f32(mValue, 1);
#else
return Vec4(mF32[1], mF32[1], mF32[1], mF32[1]);
#endif
}
Vec4 Vec3::SplatZ() const
{
#if defined(JPH_USE_SSE)
return _mm_shuffle_ps(mValue, mValue, _MM_SHUFFLE(2, 2, 2, 2));
#elif defined(JPH_USE_NEON)
return vdupq_laneq_f32(mValue, 2);
#else
return Vec4(mF32[2], mF32[2], mF32[2], mF32[2]);
#endif
}
int Vec3::GetLowestComponentIndex() const
{
return GetX() < GetY() ? (GetZ() < GetX() ? 2 : 0) : (GetZ() < GetY() ? 2 : 1);
}
int Vec3::GetHighestComponentIndex() const
{
return GetX() > GetY() ? (GetZ() > GetX() ? 2 : 0) : (GetZ() > GetY() ? 2 : 1);
}
Vec3 Vec3::Abs() const
{
#if defined(JPH_USE_AVX512)
return _mm_range_ps(mValue, mValue, 0b1000);
#elif defined(JPH_USE_SSE)
return _mm_max_ps(_mm_sub_ps(_mm_setzero_ps(), mValue), mValue);
#elif defined(JPH_USE_NEON)
return vabsq_f32(mValue);
#else
return Vec3(abs(mF32[0]), abs(mF32[1]), abs(mF32[2]));
#endif
}
Vec3 Vec3::Reciprocal() const
{
return sOne() / mValue;
}
Vec3 Vec3::Cross(Vec3Arg inV2) const
{
#if defined(JPH_USE_SSE)
Type t1 = _mm_shuffle_ps(inV2.mValue, inV2.mValue, _MM_SHUFFLE(0, 0, 2, 1)); // Assure Z and W are the same
t1 = _mm_mul_ps(t1, mValue);
Type t2 = _mm_shuffle_ps(mValue, mValue, _MM_SHUFFLE(0, 0, 2, 1)); // Assure Z and W are the same
t2 = _mm_mul_ps(t2, inV2.mValue);
Type t3 = _mm_sub_ps(t1, t2);
return _mm_shuffle_ps(t3, t3, _MM_SHUFFLE(0, 0, 2, 1)); // Assure Z and W are the same
#elif defined(JPH_USE_NEON)
Type t1 = JPH_NEON_SHUFFLE_F32x4(inV2.mValue, inV2.mValue, 1, 2, 0, 0); // Assure Z and W are the same
t1 = vmulq_f32(t1, mValue);
Type t2 = JPH_NEON_SHUFFLE_F32x4(mValue, mValue, 1, 2, 0, 0); // Assure Z and W are the same
t2 = vmulq_f32(t2, inV2.mValue);
Type t3 = vsubq_f32(t1, t2);
return JPH_NEON_SHUFFLE_F32x4(t3, t3, 1, 2, 0, 0); // Assure Z and W are the same
#else
return Vec3(mF32[1] * inV2.mF32[2] - mF32[2] * inV2.mF32[1],
mF32[2] * inV2.mF32[0] - mF32[0] * inV2.mF32[2],
mF32[0] * inV2.mF32[1] - mF32[1] * inV2.mF32[0]);
#endif
}
Vec3 Vec3::DotV(Vec3Arg inV2) const
{
#if defined(JPH_USE_SSE4_1)
return _mm_dp_ps(mValue, inV2.mValue, 0x7f);
#elif defined(JPH_USE_NEON)
float32x4_t mul = vmulq_f32(mValue, inV2.mValue);
mul = vsetq_lane_f32(0, mul, 3);
return vdupq_n_f32(vaddvq_f32(mul));
#else
float dot = 0.0f;
for (int i = 0; i < 3; i++)
dot += mF32[i] * inV2.mF32[i];
return Vec3::sReplicate(dot);
#endif
}
Vec4 Vec3::DotV4(Vec3Arg inV2) const
{
#if defined(JPH_USE_SSE4_1)
return _mm_dp_ps(mValue, inV2.mValue, 0x7f);
#elif defined(JPH_USE_NEON)
float32x4_t mul = vmulq_f32(mValue, inV2.mValue);
mul = vsetq_lane_f32(0, mul, 3);
return vdupq_n_f32(vaddvq_f32(mul));
#else
float dot = 0.0f;
for (int i = 0; i < 3; i++)
dot += mF32[i] * inV2.mF32[i];
return Vec4::sReplicate(dot);
#endif
}
float Vec3::Dot(Vec3Arg inV2) const
{
#if defined(JPH_USE_SSE4_1)
return _mm_cvtss_f32(_mm_dp_ps(mValue, inV2.mValue, 0x7f));
#elif defined(JPH_USE_NEON)
float32x4_t mul = vmulq_f32(mValue, inV2.mValue);
mul = vsetq_lane_f32(0, mul, 3);
return vaddvq_f32(mul);
#else
float dot = 0.0f;
for (int i = 0; i < 3; i++)
dot += mF32[i] * inV2.mF32[i];
return dot;
#endif
}
float Vec3::LengthSq() const
{
#if defined(JPH_USE_SSE4_1)
return _mm_cvtss_f32(_mm_dp_ps(mValue, mValue, 0x7f));
#elif defined(JPH_USE_NEON)
float32x4_t mul = vmulq_f32(mValue, mValue);
mul = vsetq_lane_f32(0, mul, 3);
return vaddvq_f32(mul);
#else
float len_sq = 0.0f;
for (int i = 0; i < 3; i++)
len_sq += mF32[i] * mF32[i];
return len_sq;
#endif
}
float Vec3::Length() const
{
#if defined(JPH_USE_SSE4_1)
return _mm_cvtss_f32(_mm_sqrt_ss(_mm_dp_ps(mValue, mValue, 0x7f)));
#elif defined(JPH_USE_NEON)
float32x4_t mul = vmulq_f32(mValue, mValue);
mul = vsetq_lane_f32(0, mul, 3);
float32x2_t sum = vdup_n_f32(vaddvq_f32(mul));
return vget_lane_f32(vsqrt_f32(sum), 0);
#else
return sqrt(LengthSq());
#endif
}
Vec3 Vec3::Sqrt() const
{
#if defined(JPH_USE_SSE)
return _mm_sqrt_ps(mValue);
#elif defined(JPH_USE_NEON)
return vsqrtq_f32(mValue);
#else
return Vec3(sqrt(mF32[0]), sqrt(mF32[1]), sqrt(mF32[2]));
#endif
}
Vec3 Vec3::Normalized() const
{
#if defined(JPH_USE_SSE4_1)
return _mm_div_ps(mValue, _mm_sqrt_ps(_mm_dp_ps(mValue, mValue, 0x7f)));
#elif defined(JPH_USE_NEON)
float32x4_t mul = vmulq_f32(mValue, mValue);
mul = vsetq_lane_f32(0, mul, 3);
float32x4_t sum = vdupq_n_f32(vaddvq_f32(mul));
return vdivq_f32(mValue, vsqrtq_f32(sum));
#else
return *this / Length();
#endif
}
Vec3 Vec3::NormalizedOr(Vec3Arg inZeroValue) const
{
#if defined(JPH_USE_SSE4_1) && !defined(JPH_PLATFORM_WASM) // _mm_blendv_ps has problems on FireFox
Type len_sq = _mm_dp_ps(mValue, mValue, 0x7f);
// clang with '-ffast-math' (which you should not use!) can generate _mm_rsqrt_ps
// instructions which produce INFs/NaNs when they get a denormal float as input.
// We therefore treat denormals as zero here.
Type is_zero = _mm_cmple_ps(len_sq, _mm_set1_ps(FLT_MIN));
#ifdef JPH_FLOATING_POINT_EXCEPTIONS_ENABLED
if (_mm_movemask_ps(is_zero) == 0xf)
return inZeroValue;
else
return _mm_div_ps(mValue, _mm_sqrt_ps(len_sq));
#else
return _mm_blendv_ps(_mm_div_ps(mValue, _mm_sqrt_ps(len_sq)), inZeroValue.mValue, is_zero);
#endif // JPH_FLOATING_POINT_EXCEPTIONS_ENABLED
#elif defined(JPH_USE_NEON)
float32x4_t mul = vmulq_f32(mValue, mValue);
mul = vsetq_lane_f32(0, mul, 3);
float32x4_t len_sq = vdupq_n_f32(vaddvq_f32(mul));
uint32x4_t is_zero = vcleq_f32(len_sq, vdupq_n_f32(FLT_MIN));
return vbslq_f32(is_zero, inZeroValue.mValue, vdivq_f32(mValue, vsqrtq_f32(len_sq)));
#else
float len_sq = LengthSq();
if (len_sq <= FLT_MIN)
return inZeroValue;
else
return *this / sqrt(len_sq);
#endif
}
bool Vec3::IsNormalized(float inTolerance) const
{
return abs(LengthSq() - 1.0f) <= inTolerance;
}
bool Vec3::IsNaN() const
{
#if defined(JPH_USE_AVX512)
return (_mm_fpclass_ps_mask(mValue, 0b10000001) & 0x7) != 0;
#elif defined(JPH_USE_SSE)
return (_mm_movemask_ps(_mm_cmpunord_ps(mValue, mValue)) & 0x7) != 0;
#elif defined(JPH_USE_NEON)
uint32x4_t mask = JPH_NEON_UINT32x4(1, 1, 1, 0);
uint32x4_t is_equal = vceqq_f32(mValue, mValue); // If a number is not equal to itself it's a NaN
return vaddvq_u32(vandq_u32(is_equal, mask)) != 3;
#else
return isnan(mF32[0]) || isnan(mF32[1]) || isnan(mF32[2]);
#endif
}
void Vec3::StoreFloat3(Float3 *outV) const
{
#if defined(JPH_USE_SSE)
_mm_store_ss(&outV->x, mValue);
Vec3 t = Swizzle<SWIZZLE_Y, SWIZZLE_Z, SWIZZLE_UNUSED>();
_mm_store_ss(&outV->y, t.mValue);
t = t.Swizzle<SWIZZLE_Y, SWIZZLE_UNUSED, SWIZZLE_UNUSED>();
_mm_store_ss(&outV->z, t.mValue);
#elif defined(JPH_USE_NEON)
float32x2_t xy = vget_low_f32(mValue);
vst1_f32(&outV->x, xy);
vst1q_lane_f32(&outV->z, mValue, 2);
#else
outV->x = mF32[0];
outV->y = mF32[1];
outV->z = mF32[2];
#endif
}
UVec4 Vec3::ToInt() const
{
#if defined(JPH_USE_SSE)
return _mm_cvttps_epi32(mValue);
#elif defined(JPH_USE_NEON)
return vcvtq_u32_f32(mValue);
#else
return UVec4(uint32(mF32[0]), uint32(mF32[1]), uint32(mF32[2]), uint32(mF32[3]));
#endif
}
UVec4 Vec3::ReinterpretAsInt() const
{
#if defined(JPH_USE_SSE)
return UVec4(_mm_castps_si128(mValue));
#elif defined(JPH_USE_NEON)
return vreinterpretq_u32_f32(mValue);
#else
return *reinterpret_cast<const UVec4 *>(this);
#endif
}
float Vec3::ReduceMin() const
{
Vec3 v = sMin(mValue, Swizzle<SWIZZLE_Y, SWIZZLE_UNUSED, SWIZZLE_Z>());
v = sMin(v, v.Swizzle<SWIZZLE_Z, SWIZZLE_UNUSED, SWIZZLE_UNUSED>());
return v.GetX();
}
float Vec3::ReduceMax() const
{
Vec3 v = sMax(mValue, Swizzle<SWIZZLE_Y, SWIZZLE_UNUSED, SWIZZLE_Z>());
v = sMax(v, v.Swizzle<SWIZZLE_Z, SWIZZLE_UNUSED, SWIZZLE_UNUSED>());
return v.GetX();
}
Vec3 Vec3::GetNormalizedPerpendicular() const
{
if (abs(mF32[0]) > abs(mF32[1]))
{
float len = sqrt(mF32[0] * mF32[0] + mF32[2] * mF32[2]);
return Vec3(mF32[2], 0.0f, -mF32[0]) / len;
}
else
{
float len = sqrt(mF32[1] * mF32[1] + mF32[2] * mF32[2]);
return Vec3(0.0f, mF32[2], -mF32[1]) / len;
}
}
Vec3 Vec3::GetSign() const
{
#if defined(JPH_USE_AVX512)
return _mm_fixupimm_ps(mValue, mValue, _mm_set1_epi32(0xA9A90A00), 0);
#elif defined(JPH_USE_SSE)
Type minus_one = _mm_set1_ps(-1.0f);
Type one = _mm_set1_ps(1.0f);
return _mm_or_ps(_mm_and_ps(mValue, minus_one), one);
#elif defined(JPH_USE_NEON)
Type minus_one = vdupq_n_f32(-1.0f);
Type one = vdupq_n_f32(1.0f);
return vreinterpretq_f32_u32(vorrq_u32(vandq_u32(vreinterpretq_u32_f32(mValue), vreinterpretq_u32_f32(minus_one)), vreinterpretq_u32_f32(one)));
#else
return Vec3(std::signbit(mF32[0])? -1.0f : 1.0f,
std::signbit(mF32[1])? -1.0f : 1.0f,
std::signbit(mF32[2])? -1.0f : 1.0f);
#endif
}
JPH_NAMESPACE_END