-
Notifications
You must be signed in to change notification settings - Fork 26
/
Copy pathtrain_stage2.sh
61 lines (54 loc) · 2.08 KB
/
train_stage2.sh
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
#!/bin/bash
WORKDIR=${1:-./exp/stage2}
STAGE1WORKDIR=${2:-./exp/stage1}
mkdir -p $WORKDIR
# Check if workdir is empty
if [ "$(find $WORKDIR -mindepth 1 -maxdepth 1 -type d)" ]; then
echo "WORKDIR is not empty, resume training"
else
# Check if STAGE1WORKDIR exists
if [ ! -d $STAGE1WORKDIR ]; then
echo "Error: Stage1 work directory $STAGE1WORKDIR does not exist."
exit 1
fi
echo "WORKDIR is empty, load the model form stage1 workdir $STAGE1WORKDIR"
# If empty, create checkpoint-0 directory and soft link all files from stage 1 except for 'scheduler.pt', 'training_args.bin', and 'optimizer.pt', so we can load the checkpoint from stage 1
mkdir -p $WORKDIR/checkpoint-0
cd $WORKDIR/checkpoint-0/
find $STAGE1WORKDIR/* -type f -not -name 'scheduler.pt' -not -name 'training_args.bin' -not -name 'optimizer.pt' -not -name 'trainer_state.json' -print0 | xargs -0 -I {} ln -s {} .
cd -
fi
export PYTHONPATH=`pwd`:$PYTHONPATH
torchrun --nnodes=1 --nproc_per_node=8 --master_port=25001 \
gpt4roi/train/train_mem.py \
--model_name_or_path path_to_vicuna-7b \
--vision_tower openai/clip-vit-large-patch14 \
--pretrain_mm_mlp_adapter LLaVA-7b-pretrain-projector-v0-CC3M-595K-original_caption.bin \
--dataset_config ./gpt4roi/configs/stage2.py \
--mm_vision_select_layer -2 \
--mm_use_im_start_end True \
--bf16 True \
--output_dir $WORKDIR \
--num_train_epochs 2 \
--per_device_train_batch_size 2 \
--per_device_eval_batch_size 4 \
--gradient_accumulation_steps 1 \
--evaluation_strategy "no" \
--save_strategy "steps" \
--save_steps 3000 \
--save_total_limit 1 \
--learning_rate 2e-5 \
--weight_decay 0. \
--warmup_ratio 0.003 \
--warmup_steps 3000 \
--fsdp "full_shard auto_wrap" \
--fsdp_transformer_layer_cls_to_wrap 'LlamaDecoderLayer' \
--lr_scheduler_type "cosine" \
--logging_steps 1 \
--tf32 True \
--model_max_length 2048 \
--gradient_checkpointing True \
--lazy_preprocess True \
--report_to "none" \
--seed 0 \
| tee $WORKDIR/train.log