forked from pandas-dev/pandas
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgeneric.py
1204 lines (980 loc) · 35.8 KB
/
generic.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
# pylint: disable=W0231,E1101
import warnings
from pandas import compat
import numpy as np
import pandas.lib as lib
from pandas.core.base import PandasObject
from pandas.core.index import MultiIndex
import pandas.core.indexing as indexing
from pandas.core.indexing import _maybe_convert_indices
from pandas.tseries.index import DatetimeIndex
import pandas.core.common as com
from pandas.compat import map, zip
class PandasError(Exception):
pass
class PandasContainer(PandasObject):
_AXIS_NUMBERS = {
'index': 0,
'columns': 1
}
_AXIS_ALIASES = {}
_AXIS_NAMES = dict((v, k) for k, v in compat.iteritems(_AXIS_NUMBERS))
def to_pickle(self, path):
"""
Pickle (serialize) object to input file path
Parameters
----------
path : string
File path
"""
from pandas.io.pickle import to_pickle
return to_pickle(self, path)
def save(self, path): # TODO remove in 0.13
from pandas.io.pickle import to_pickle
warnings.warn("save is deprecated, use to_pickle", FutureWarning)
return to_pickle(self, path)
def load(self, path): # TODO remove in 0.13
from pandas.io.pickle import read_pickle
warnings.warn("load is deprecated, use pd.read_pickle", FutureWarning)
return read_pickle(path)
def __hash__(self):
raise TypeError('{0!r} objects are mutable, thus they cannot be'
' hashed'.format(self.__class__.__name__))
def __unicode__(self):
# unicode representation based upon iterating over self
# (since, by definition, `PandasContainers` are iterable)
prepr = '[%s]' % ','.join(map(com.pprint_thing, self))
return '%s(%s)' % (self.__class__.__name__, prepr)
#----------------------------------------------------------------------
# Axis name business
def _get_axis_number(self, axis):
axis = self._AXIS_ALIASES.get(axis, axis)
if com.is_integer(axis):
if axis in self._AXIS_NAMES:
return axis
else:
try:
return self._AXIS_NUMBERS[axis]
except:
pass
raise ValueError('No axis named %s' % axis)
def _get_axis_name(self, axis):
axis = self._AXIS_ALIASES.get(axis, axis)
if isinstance(axis, compat.string_types):
if axis in self._AXIS_NUMBERS:
return axis
else:
try:
return self._AXIS_NAMES[axis]
except:
pass
raise ValueError('No axis named %s' % axis)
def _get_axis(self, axis):
name = self._get_axis_name(axis)
return getattr(self, name)
#----------------------------------------------------------------------
# Indexers
@classmethod
def _create_indexer(cls, name, indexer):
""" create an indexer like _name in the class """
iname = '_%s' % name
setattr(cls,iname,None)
def _indexer(self):
if getattr(self,iname,None) is None:
setattr(self,iname,indexer(self, name))
return getattr(self,iname)
setattr(cls,name,property(_indexer))
def abs(self):
"""
Return an object with absolute value taken. Only applicable to objects
that are all numeric
Returns
-------
abs: type of caller
"""
return np.abs(self)
def get(self, key, default=None):
"""
Get item from object for given key (DataFrame column, Panel slice,
etc.). Returns default value if not found
Parameters
----------
key : object
Returns
-------
value : type of items contained in object
"""
try:
return self[key]
except KeyError:
return default
def groupby(self, by=None, axis=0, level=None, as_index=True, sort=True,
group_keys=True, squeeze=False):
"""
Group series using mapper (dict or key function, apply given function
to group, return result as series) or by a series of columns
Parameters
----------
by : mapping function / list of functions, dict, Series, or tuple /
list of column names.
Called on each element of the object index to determine the groups.
If a dict or Series is passed, the Series or dict VALUES will be
used to determine the groups
axis : int, default 0
level : int, level name, or sequence of such, default None
If the axis is a MultiIndex (hierarchical), group by a particular
level or levels
as_index : boolean, default True
For aggregated output, return object with group labels as the
index. Only relevant for DataFrame input. as_index=False is
effectively "SQL-style" grouped output
sort : boolean, default True
Sort group keys. Get better performance by turning this off
group_keys : boolean, default True
When calling apply, add group keys to index to identify pieces
squeeze : boolean, default False
reduce the dimensionaility of the return type if possible, otherwise
return a consistent type
Examples
--------
# DataFrame result
>>> data.groupby(func, axis=0).mean()
# DataFrame result
>>> data.groupby(['col1', 'col2'])['col3'].mean()
# DataFrame with hierarchical index
>>> data.groupby(['col1', 'col2']).mean()
Returns
-------
GroupBy object
"""
from pandas.core.groupby import groupby
axis = self._get_axis_number(axis)
return groupby(self, by, axis=axis, level=level, as_index=as_index,
sort=sort, group_keys=group_keys,
squeeze=squeeze)
def asfreq(self, freq, method=None, how=None, normalize=False):
"""
Convert all TimeSeries inside to specified frequency using DateOffset
objects. Optionally provide fill method to pad/backfill missing values.
Parameters
----------
freq : DateOffset object, or string
method : {'backfill', 'bfill', 'pad', 'ffill', None}
Method to use for filling holes in reindexed Series
pad / ffill: propagate last valid observation forward to next valid
backfill / bfill: use NEXT valid observation to fill methdo
how : {'start', 'end'}, default end
For PeriodIndex only, see PeriodIndex.asfreq
normalize : bool, default False
Whether to reset output index to midnight
Returns
-------
converted : type of caller
"""
from pandas.tseries.resample import asfreq
return asfreq(self, freq, method=method, how=how,
normalize=normalize)
def at_time(self, time, asof=False):
"""
Select values at particular time of day (e.g. 9:30AM)
Parameters
----------
time : datetime.time or string
Returns
-------
values_at_time : type of caller
"""
try:
indexer = self.index.indexer_at_time(time, asof=asof)
return self.take(indexer, convert=False)
except AttributeError:
raise TypeError('Index must be DatetimeIndex')
def between_time(self, start_time, end_time, include_start=True,
include_end=True):
"""
Select values between particular times of the day (e.g., 9:00-9:30 AM)
Parameters
----------
start_time : datetime.time or string
end_time : datetime.time or string
include_start : boolean, default True
include_end : boolean, default True
Returns
-------
values_between_time : type of caller
"""
try:
indexer = self.index.indexer_between_time(
start_time, end_time, include_start=include_start,
include_end=include_end)
return self.take(indexer, convert=False)
except AttributeError:
raise TypeError('Index must be DatetimeIndex')
def resample(self, rule, how=None, axis=0, fill_method=None,
closed=None, label=None, convention='start',
kind=None, loffset=None, limit=None, base=0):
"""
Convenience method for frequency conversion and resampling of regular
time-series data.
Parameters
----------
rule : the offset string or object representing target conversion
how : string, method for down- or re-sampling, default to 'mean' for
downsampling
axis : int, optional, default 0
fill_method : string, fill_method for upsampling, default None
closed : {'right', 'left'}
Which side of bin interval is closed
label : {'right', 'left'}
Which bin edge label to label bucket with
convention : {'start', 'end', 's', 'e'}
kind: "period"/"timestamp"
loffset: timedelta
Adjust the resampled time labels
limit: int, default None
Maximum size gap to when reindexing with fill_method
base : int, default 0
For frequencies that evenly subdivide 1 day, the "origin" of the
aggregated intervals. For example, for '5min' frequency, base could
range from 0 through 4. Defaults to 0
"""
from pandas.tseries.resample import TimeGrouper
axis = self._get_axis_number(axis)
sampler = TimeGrouper(rule, label=label, closed=closed, how=how,
axis=axis, kind=kind, loffset=loffset,
fill_method=fill_method, convention=convention,
limit=limit, base=base)
return sampler.resample(self)
def first(self, offset):
"""
Convenience method for subsetting initial periods of time series data
based on a date offset
Parameters
----------
offset : string, DateOffset, dateutil.relativedelta
Examples
--------
ts.last('10D') -> First 10 days
Returns
-------
subset : type of caller
"""
from pandas.tseries.frequencies import to_offset
if not isinstance(self.index, DatetimeIndex):
raise NotImplementedError
if len(self.index) == 0:
return self
offset = to_offset(offset)
end_date = end = self.index[0] + offset
# Tick-like, e.g. 3 weeks
if not offset.isAnchored() and hasattr(offset, '_inc'):
if end_date in self.index:
end = self.index.searchsorted(end_date, side='left')
return self.ix[:end]
def last(self, offset):
"""
Convenience method for subsetting final periods of time series data
based on a date offset
Parameters
----------
offset : string, DateOffset, dateutil.relativedelta
Examples
--------
ts.last('5M') -> Last 5 months
Returns
-------
subset : type of caller
"""
from pandas.tseries.frequencies import to_offset
if not isinstance(self.index, DatetimeIndex):
raise NotImplementedError
if len(self.index) == 0:
return self
offset = to_offset(offset)
start_date = start = self.index[-1] - offset
start = self.index.searchsorted(start_date, side='right')
return self.ix[start:]
def select(self, crit, axis=0):
"""
Return data corresponding to axis labels matching criteria
Parameters
----------
crit : function
To be called on each index (label). Should return True or False
axis : int
Returns
-------
selection : type of caller
"""
axis_name = self._get_axis_name(axis)
axis = self._get_axis(axis)
if len(axis) > 0:
new_axis = axis[np.asarray([bool(crit(label)) for label in axis])]
else:
new_axis = axis
return self.reindex(**{axis_name: new_axis})
def drop(self, labels, axis=0, level=None):
"""
Return new object with labels in requested axis removed
Parameters
----------
labels : array-like
axis : int
level : int or name, default None
For MultiIndex
Returns
-------
dropped : type of caller
"""
axis_name = self._get_axis_name(axis)
axis, axis_ = self._get_axis(axis), axis
if axis.is_unique:
if level is not None:
if not isinstance(axis, MultiIndex):
raise AssertionError('axis must be a MultiIndex')
new_axis = axis.drop(labels, level=level)
else:
new_axis = axis.drop(labels)
dropped = self.reindex(**{axis_name: new_axis})
try:
dropped.axes[axis_].set_names(axis.names, inplace=True)
except AttributeError:
pass
return dropped
else:
if level is not None:
if not isinstance(axis, MultiIndex):
raise AssertionError('axis must be a MultiIndex')
indexer = -lib.ismember(axis.get_level_values(level),
set(labels))
else:
indexer = -axis.isin(labels)
slicer = [slice(None)] * self.ndim
slicer[self._get_axis_number(axis_name)] = indexer
return self.ix[tuple(slicer)]
def sort_index(self, axis=0, ascending=True):
"""
Sort object by labels (along an axis)
Parameters
----------
axis : {0, 1}
Sort index/rows versus columns
ascending : boolean, default True
Sort ascending vs. descending
Returns
-------
sorted_obj : type of caller
"""
axis = self._get_axis_number(axis)
axis_name = self._get_axis_name(axis)
labels = self._get_axis(axis)
sort_index = labels.argsort()
if not ascending:
sort_index = sort_index[::-1]
new_axis = labels.take(sort_index)
return self.reindex(**{axis_name: new_axis})
def reindex(self, *args, **kwds):
raise NotImplementedError
def tshift(self, periods=1, freq=None, **kwds):
"""
Shift the time index, using the index's frequency if available
Parameters
----------
periods : int
Number of periods to move, can be positive or negative
freq : DateOffset, timedelta, or time rule string, default None
Increment to use from datetools module or time rule (e.g. 'EOM')
Notes
-----
If freq is not specified then tries to use the freq or inferred_freq
attributes of the index. If neither of those attributes exist, a
ValueError is thrown
Returns
-------
shifted : Series
"""
if freq is None:
freq = getattr(self.index, 'freq', None)
if freq is None:
freq = getattr(self.index, 'inferred_freq', None)
if freq is None:
msg = 'Freq was not given and was not set in the index'
raise ValueError(msg)
return self.shift(periods, freq, **kwds)
def pct_change(self, periods=1, fill_method='pad', limit=None, freq=None,
**kwds):
"""
Percent change over given number of periods
Parameters
----------
periods : int, default 1
Periods to shift for forming percent change
fill_method : str, default 'pad'
How to handle NAs before computing percent changes
limit : int, default None
The number of consecutive NAs to fill before stopping
freq : DateOffset, timedelta, or offset alias string, optional
Increment to use from time series API (e.g. 'M' or BDay())
Returns
-------
chg : Series or DataFrame
"""
if fill_method is None:
data = self
else:
data = self.fillna(method=fill_method, limit=limit)
rs = data / data.shift(periods=periods, freq=freq, **kwds) - 1
if freq is None:
mask = com.isnull(self.values)
np.putmask(rs.values, mask, np.nan)
return rs
def to_hdf(self, path_or_buf, key, **kwargs):
""" activate the HDFStore """
from pandas.io import pytables
return pytables.to_hdf(path_or_buf, key, self, **kwargs)
def to_clipboard(self):
"""
Attempt to write text representation of object to the system clipboard
Notes
-----
Requirements for your platform
- Linux: xclip, or xsel (with gtk or PyQt4 modules)
- Windows:
- OS X:
"""
from pandas.io import clipboard
clipboard.to_clipboard(self)
def to_json(self, path_or_buf=None, orient=None, date_format='epoch',
double_precision=10, force_ascii=True):
"""
Convert the object to a JSON string.
Note NaN's and None will be converted to null and datetime objects
will be converted to UNIX timestamps.
Parameters
----------
path_or_buf : the path or buffer to write the result string
if this is None, return a StringIO of the converted string
orient : string
* Series
- default is 'index'
- allowed values are: {'split','records','index'}
* DataFrame
- default is 'columns'
- allowed values are: {'split','records','index','columns','values'}
* The format of the JSON string
- split : dict like {index -> [index], columns -> [columns], data -> [values]}
- records : list like [{column -> value}, ... , {column -> value}]
- index : dict like {index -> {column -> value}}
- columns : dict like {column -> {index -> value}}
- values : just the values array
date_format : type of date conversion (epoch = epoch milliseconds, iso = ISO8601)
default is epoch
double_precision : The number of decimal places to use when encoding
floating point values, default 10.
force_ascii : force encoded string to be ASCII, default True.
Returns
-------
result : a JSON compatible string written to the path_or_buf;
if the path_or_buf is none, return a StringIO of the result
"""
from pandas.io import json
return json.to_json(path_or_buf=path_or_buf, obj=self, orient=orient, date_format=date_format,
double_precision=double_precision, force_ascii=force_ascii)
# install the indexerse
for _name, _indexer in indexing.get_indexers_list():
PandasContainer._create_indexer(_name,_indexer)
class NDFrame(PandasContainer):
"""
N-dimensional analogue of DataFrame. Store multi-dimensional in a
size-mutable, labeled data structure
Parameters
----------
data : BlockManager
axes : list
copy : boolean, default False
"""
# kludge
_default_stat_axis = 0
def __init__(self, data, axes=None, copy=False, dtype=None):
if dtype is not None:
data = data.astype(dtype)
elif copy:
data = data.copy()
if axes is not None:
for i, ax in enumerate(axes):
data = data.reindex_axis(ax, axis=i)
object.__setattr__(self, '_data', data)
object.__setattr__(self, '_item_cache', {})
def astype(self, dtype, copy = True, raise_on_error = True):
"""
Cast object to input numpy.dtype
Return a copy when copy = True (be really careful with this!)
Parameters
----------
dtype : numpy.dtype or Python type
raise_on_error : raise on invalid input
Returns
-------
casted : type of caller
"""
mgr = self._data.astype(dtype, copy = copy, raise_on_error = raise_on_error)
return self._constructor(mgr)
@property
def axes(self):
return self._data.axes
@property
def values(self):
return self._data.as_matrix()
@property
def empty(self):
return not all(len(ax) > 0 for ax in self.axes)
def __nonzero__(self):
return not self.empty
# Python 3 compat
__bool__ = __nonzero__
@property
def ndim(self):
return self._data.ndim
def _set_axis(self, axis, labels):
self._data.set_axis(axis, labels)
self._clear_item_cache()
def __getitem__(self, item):
return self._get_item_cache(item)
def _get_item_cache(self, item):
cache = self._item_cache
try:
return cache[item]
except Exception:
values = self._data.get(item)
res = self._box_item_values(item, values)
cache[item] = res
return res
def _box_item_values(self, key, values):
raise NotImplementedError
def _clear_item_cache(self):
self._item_cache.clear()
def _set_item(self, key, value):
self._data.set(key, value)
self._clear_item_cache()
def __delitem__(self, key):
"""
Delete item
"""
deleted = False
maybe_shortcut = False
if hasattr(self, 'columns') and isinstance(self.columns, MultiIndex):
try:
maybe_shortcut = key not in self.columns._engine
except TypeError:
pass
if maybe_shortcut:
# Allow shorthand to delete all columns whose first len(key)
# elements match key:
if not isinstance(key, tuple):
key = (key,)
for col in self.columns:
if isinstance(col, tuple) and col[:len(key)] == key:
del self[col]
deleted = True
if not deleted:
# If the above loop ran and didn't delete anything because
# there was no match, this call should raise the appropriate
# exception:
self._data.delete(key)
try:
del self._item_cache[key]
except KeyError:
pass
# originally used to get around 2to3's changes to iteritems.
# Now unnecessary.
def iterkv(self, *args, **kwargs):
warnings.warn("iterkv is deprecated and will be removed in a future "
"release, use ``iteritems`` instead.", DeprecationWarning)
return self.iteritems(*args, **kwargs)
def get_dtype_counts(self):
""" return the counts of dtypes in this frame """
from pandas import Series
return Series(self._data.get_dtype_counts())
def pop(self, item):
"""
Return item and drop from frame. Raise KeyError if not found.
"""
result = self[item]
del self[item]
return result
def squeeze(self):
""" squeeze length 1 dimensions """
try:
return self.ix[tuple([ slice(None) if len(a) > 1 else a[0] for a in self.axes ])]
except:
return self
def _expand_axes(self, key):
new_axes = []
for k, ax in zip(key, self.axes):
if k not in ax:
if type(k) != ax.dtype.type:
ax = ax.astype('O')
new_axes.append(ax.insert(len(ax), k))
else:
new_axes.append(ax)
return new_axes
#----------------------------------------------------------------------
# Consolidation of internals
def _consolidate_inplace(self):
f = lambda: self._data.consolidate()
self._data = self._protect_consolidate(f)
def consolidate(self, inplace=False):
"""
Compute NDFrame with "consolidated" internals (data of each dtype
grouped together in a single ndarray). Mainly an internal API function,
but available here to the savvy user
Parameters
----------
inplace : boolean, default False
If False return new object, otherwise modify existing object
Returns
-------
consolidated : type of caller
"""
if inplace:
self._consolidate_inplace()
else:
f = lambda: self._data.consolidate()
cons_data = self._protect_consolidate(f)
if cons_data is self._data:
cons_data = cons_data.copy()
return self._constructor(cons_data)
@property
def _is_mixed_type(self):
f = lambda: self._data.is_mixed_type
return self._protect_consolidate(f)
@property
def _is_numeric_mixed_type(self):
f = lambda: self._data.is_numeric_mixed_type
return self._protect_consolidate(f)
def _protect_consolidate(self, f):
blocks_before = len(self._data.blocks)
result = f()
if len(self._data.blocks) != blocks_before:
self._clear_item_cache()
return result
def _reindex_axis(self, new_index, fill_method, axis, copy):
new_data = self._data.reindex_axis(new_index, axis=axis,
method=fill_method, copy=copy)
if new_data is self._data and not copy:
return self
else:
return self._constructor(new_data)
def cumsum(self, axis=None, skipna=True):
"""
Return DataFrame of cumulative sums over requested axis.
Parameters
----------
axis : {0, 1}
0 for row-wise, 1 for column-wise
skipna : boolean, default True
Exclude NA/null values. If an entire row/column is NA, the result
will be NA
Returns
-------
y : DataFrame
"""
if axis is None:
axis = self._default_stat_axis
else:
axis = self._get_axis_number(axis)
y = self.values.copy()
if not issubclass(y.dtype.type, np.integer):
mask = np.isnan(self.values)
if skipna:
np.putmask(y, mask, 0.)
result = y.cumsum(axis)
if skipna:
np.putmask(result, mask, np.nan)
else:
result = y.cumsum(axis)
return self._wrap_array(result, self.axes, copy=False)
def _wrap_array(self, array, axes, copy=False):
raise NotImplementedError
def cumprod(self, axis=None, skipna=True):
"""
Return cumulative product over requested axis as DataFrame
Parameters
----------
axis : {0, 1}
0 for row-wise, 1 for column-wise
skipna : boolean, default True
Exclude NA/null values. If an entire row/column is NA, the result
will be NA
Returns
-------
y : DataFrame
"""
if axis is None:
axis = self._default_stat_axis
else:
axis = self._get_axis_number(axis)
y = self.values.copy()
if not issubclass(y.dtype.type, np.integer):
mask = np.isnan(self.values)
if skipna:
np.putmask(y, mask, 1.)
result = y.cumprod(axis)
if skipna:
np.putmask(result, mask, np.nan)
else:
result = y.cumprod(axis)
return self._wrap_array(result, self.axes, copy=False)
def cummax(self, axis=None, skipna=True):
"""
Return DataFrame of cumulative max over requested axis.
Parameters
----------
axis : {0, 1}
0 for row-wise, 1 for column-wise
skipna : boolean, default True
Exclude NA/null values. If an entire row/column is NA, the result
will be NA
Returns
-------
y : DataFrame
"""
if axis is None:
axis = self._default_stat_axis
else:
axis = self._get_axis_number(axis)
y = self.values.copy()
if not issubclass(y.dtype.type, np.integer):
mask = np.isnan(self.values)
if skipna:
np.putmask(y, mask, -np.inf)
result = np.maximum.accumulate(y, axis)
if skipna:
np.putmask(result, mask, np.nan)
else:
result = np.maximum.accumulate(y, axis)
return self._wrap_array(result, self.axes, copy=False)
def cummin(self, axis=None, skipna=True):
"""
Return DataFrame of cumulative min over requested axis.
Parameters
----------
axis : {0, 1}
0 for row-wise, 1 for column-wise
skipna : boolean, default True
Exclude NA/null values. If an entire row/column is NA, the result
will be NA
Returns
-------
y : DataFrame
"""
if axis is None:
axis = self._default_stat_axis
else:
axis = self._get_axis_number(axis)
y = self.values.copy()
if not issubclass(y.dtype.type, np.integer):
mask = np.isnan(self.values)
if skipna:
np.putmask(y, mask, np.inf)
result = np.minimum.accumulate(y, axis)
if skipna:
np.putmask(result, mask, np.nan)
else:
result = np.minimum.accumulate(y, axis)
return self._wrap_array(result, self.axes, copy=False)
def copy(self, deep=True):
"""
Make a copy of this object
Parameters
----------
deep : boolean, default True
Make a deep copy, i.e. also copy data
Returns
-------
copy : type of caller
"""
data = self._data
if deep:
data = data.copy()
return self._constructor(data)
def swaplevel(self, i, j, axis=0):
"""
Swap levels i and j in a MultiIndex on a particular axis
Parameters
----------
i, j : int, string (can be mixed)
Level of index to be swapped. Can pass level name as string.
Returns
-------
swapped : type of caller (new object)
"""
axis = self._get_axis_number(axis)
result = self.copy()
labels = result._data.axes[axis]
result._data.set_axis(axis, labels.swaplevel(i, j))
return result
def add_prefix(self, prefix):
"""
Concatenate prefix string with panel items names.