-
Notifications
You must be signed in to change notification settings - Fork 0
/
comet_cnn.py
178 lines (139 loc) · 5.84 KB
/
comet_cnn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
import os.path
import keras.activations
import matplotlib.pyplot as plt
from pathlib import Path
import numpy as np
from sklearn.metrics import roc_curve
from astropy.io import fits
import tensorflow as tf
from tensorflow.keras.preprocessing.image import ImageDataGenerator
from tensorflow.keras.models import Sequential, Model
from tensorflow.keras.layers import Input, Dense, Dropout, Activation, Flatten, Concatenate
from tensorflow.keras.layers import Convolution2D, MaxPooling2D
from tf_fits.image import image_decode_fits
import random
import glob
from sklearn.utils import shuffle
from sklearn.metrics import accuracy_score
from tensorflow.keras.callbacks import EarlyStopping
from tensorflow.keras.callbacks import ModelCheckpoint
def CNN():
input_list = []
# Creates the CNN for 5 images
for i in range(5):
input_list.append(Input(shape=(1024, 1024,)))
merged = Concatenate()(input_list)
dense1 = Dense(5, input_dim=5, activation='sigmoid', use_bias=True)(merged)
flatten = Flatten()(dense1)
output = Dense(2, activation='relu')(flatten)
model = Model(inputs=input_list, outputs=output)
print("Model Summary:")
print("==============")
print(model.summary())
model.compile(loss='mean_squared_error', optimizer='adam')
return model
def train_CNN(image_set, truth, filenames):
batch_size = 30
epochs = 100
print("Filenames:")
print(filenames)
print("#### Image_set shape:" + str(image_set.shape))
# print(image_set)
img_data_npy = []
expected_res = []
for comet_num in range(len(image_set)):
comet_res = []
img_data_per_comet = []
for img_num in range(len(image_set[0])):
# data = images[i][1].data # This is a numpy.ndarray
# print("The data on image: " + str(data))
# img_data_npy.append(data)
# TODO fix this, appending one per image instead of one per comet
img_data_per_comet.append(image_set[comet_num][img_num])
print("Truth values: ")
print(truth)
image_filename = filenames[comet_num][img_num]
print("Index: " + str(comet_num + 1))
print("Image filename:")
print(image_filename)
comet_res.append(truth[comet_num + 1][image_filename])
img_data_npy.append(np.asarray(img_data_per_comet))
expected_res.append(np.asarray(comet_res))
model = CNN()
# img_data_npy = np.asarray(img_data_npy)
# expected_res = np.asarray(expected_res)
# print("The image data:" + str(img_data_npy))
print("The truth data: " + str(expected_res))
# img_rows, img_cols = img_data_npy.shape[1:3]
img_channels = 5 # TODO wtf is this
# print("#### Shape before reshape: " + str(img_data_npy.shape))
# img_data_npy = img_data_npy.reshape(img_data_npy.shape[0], 5, 1024, -1)
# print("Shape: " + str(img_data_npy.shape))
model.fit(img_data_npy, expected_res, batch_size=batch_size, epochs=epochs)
print("Saving model...")
# save weights
model.save_weights("comet_cnn.weights", overwrite=True)
image_data = fits.getdata("NASA_data/train/cmt0038/22257681.fts", ext=0)
filepath = ""
truth_file = open("NASA_data/train-gt.txt", 'r')
truth_data = {}
for line in truth_file:
info = line.split(',')
# each line contains {cometid} [{image_name}, {x_coord}, {y_coord}] ... {confidence}
comet_id = info[0]
truth_data[comet_id] = {}
# this accounts for the initial cometid and confidence at the end
# and because there is 3 objects per image
img_amount = (len(info) - 2) // 3
for i in range(0, img_amount):
image_name = info[(3 * i) + 1]
x_coord = info[(3 * i) + 2]
y_coord = info[(3 * i) + 3]
truth_data[comet_id][image_name] = [float(x_coord), float(y_coord)]
# print(truth_data)
set_5_image = []
set_5_image_truth = {}
set_5_image_filenames = []
# TODO change this to 38, 2000
for comet_number in range(1, 10):
comet_truth = {}
if 1000 > comet_number >= 100:
filepath = "NASA_data/train-sample/cmt0" + str(comet_number) + "/*.fts"
comet_truth = truth_data["cmt0" + str(comet_number)]
elif 10 <= comet_number < 100:
filepath = "NASA_data/train-sample/cmt00" + str(comet_number) + "/*.fts"
comet_truth = truth_data["cmt00" + str(comet_number)]
elif comet_number < 10:
filepath = "NASA_data/train-sample/cmt000" + str(comet_number) + "/*.fts"
comet_truth = truth_data["cmt000" + str(comet_number)]
else:
filepath = "NASA_data/train-sample/cmt" + str(comet_number) + "/*.fts"
comet_truth = truth_data["cmt" + str(comet_number)]
number_of_images = 0
images = []
image_names = []
for filename in glob.glob(filepath):
with fits.open(filename) as opened_img:
number_of_images += 1
# Normalizes imgs to the exposure time
# TODO figure out how to use normalized imgs with the tf-fits
exposure_time = opened_img[0].header['EXPTIME']
normalized_img = opened_img[0].data / exposure_time
# images.append(normalized_img)
img = tf.io.read_file(filename)
img = image_decode_fits(img, 0) # 0 for the header
images.append(img)
image_names.append(os.path.basename(filename))
# print(opened_img.info())
print("Number of images for comet " + str(comet_number) + " :" + str(number_of_images))
if number_of_images >= 5:
# If the number of images is equal or more than 5, add the comet to the list for training
set_5_image.append(images[0:5])
set_5_image_truth[comet_number] = comet_truth
set_5_image_filenames.append(image_names[0:5])
set_5_image = np.asarray(set_5_image)
train_CNN(set_5_image, set_5_image_truth, set_5_image_filenames)
plt.figure()
plt.imshow(image_data, cmap='gray')
plt.colorbar()
plt.show()