-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathcity.py
374 lines (327 loc) · 14.7 KB
/
city.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
import dgl
import torch
from miscellaneous import *
import random
class City:
def __init__(self,
G: dgl.DGLGraph,
call_generator,
driver_initializer,
total_driver_number_per_time=None,
speed_info=None,
name='simple_city',
driver_coefficient=0.5,
consider_speed=False,
verbose=False,
after_action_random=True,
**kwargs
):
'''
RL environment for road network.
:param G: line graph of road graph.
:param call_generator: CallGenerator object
:param driver_initializer: DriverInitializer object
:param total_driver_number_per_time: TotalDriverCount object
:param speed_info: SpeedInfo object
:param name: name for city
:param driver_coefficient: percentage of available drivers. this value is multiplied to all driver number related values.
:param consider_speed: observe speed?
:param verbose: print debugging message
:param after_action_random: after action, put driver on random position or not.
'''
self.name = name
self.roads = []
self.drivers = []
self.city_time = 0
self.city_time_unit_in_minute = 1
self.driver_uuid = 0
self.G = G
self.N = G.number_of_nodes()
pops = []
self.road_key_dict = {}
for i in range(self.N):
road = Road(i, **self.G.nodes[i].data)
road.reachable_roads = self.G.out_edges(i)[1].tolist()
pop = road.popularity
pops.append(pop)
self.roads.append(road)
self.road_key_dict[(road.u, road.v)] = road.uuid
pops.sort(reverse=True)
self.actionable_drivers = None
self.non_actionable_drivers = None
self.epsilon = 0
self.call_generator = call_generator
call_generator.initialize(self)
self.seed = 0
self.random_seed = True
self.driver_initializer = driver_initializer
self.total_driver_number_per_time = total_driver_number_per_time
self.driver_coefficient = driver_coefficient
self.consider_speed = consider_speed
self.speed_info = speed_info
self.verbose = verbose
self.after_action_random = after_action_random
def get_observation(self):
if self.consider_speed:
obs = torch.zeros((self.N, 3))
for i in range(self.N):
obs[i][0] = len(self.roads[i].drivers)
obs[i][1] = len(self.roads[i].calls)
obs[i][2] = self.roads[i].speed / 24
return obs
else:
obs = torch.zeros((self.N, 2))
for i in range(self.N):
obs[i][0] = len(self.roads[i].drivers)
obs[i][1] = len(self.roads[i].calls)
return obs
def set_speed(self):
if self.speed_info is not None:
self.speed_info.set_speed(self)
def update_old_calls(self):
# remove old calls
for road in self.roads:
road.calls = [x for x in road.calls if self.city_time < x.wait_end_time]
def get_road(self, u, v):
road_id = self.road_key_dict[(u, v)]
return road_id
def generate_calls(self, is_initialize=False):
self.call_generator.generate_call(self, is_initialize=is_initialize, seed=self.seed if not self.random_seed else None)
def assign_calls(self):
"""
Randomly assign call to the drivers at the same road.
:return
"""
assigned_call_number = 0
for road in self.roads:
assignable_call = min(len(road.calls), len(road.drivers))
for i in range(assignable_call):
driver = road.drivers[i]
driver.assign_call(road.calls[i])
road.calls[i].served_time = self.city_time
assigned_call_number += assignable_call
del road.calls[0:assignable_call]
del road.drivers[0:assignable_call]
return assigned_call_number
def update_drivers_status(self):
'''
Check whether driver has finished current call.
:return:
'''
for driver in self.drivers:
if driver.is_online():
call = driver.current_serving_call
if call.served_time + call.duration <= self.city_time:
driver.current_serving_call = None
driver.road_index = call.e
driver.last_road_index = driver.road_index
driver.road_position = call.ep
self.roads[call.e].drivers.append(driver)
def charge_drive_time(self):
for driver in self.drivers:
if not driver.is_online():
driver.movable_time = self.city_time_unit_in_minute
def get_actionable_drivers(self):
'''
get actionable / non actionable drivers
:return: list of actionable / non actionable drivers
'''
actionable_drivers = []
actionable_drivers_count = []
non_actionable_drivers = []
non_actionable_drivers_count = []
for road in self.roads:
driver_count = 0
non_driver_count = 0
for driver in road.drivers:
if driver.movable_time > 0 and not driver.is_online():
road = self.roads[driver.road_index]
left_distance = road.length - driver.road_position
road_speed_in_meter_per_min = road.speed * 1000 / 60
time_to_finish = left_distance / road_speed_in_meter_per_min
if time_to_finish > driver.movable_time:
driver.road_position += driver.movable_time * road_speed_in_meter_per_min
non_actionable_drivers.append(driver)
non_driver_count += 1
driver.movable_time = 0
else:
driver.movable_time -= time_to_finish
actionable_drivers.append(driver)
driver_count += 1
road.actionable_driver_number = driver_count
actionable_drivers_count.append(driver_count)
non_actionable_drivers_count.append(non_driver_count)
if self.verbose:
print("Actionable driver number :", sum(actionable_drivers_count))
print("Non-Actionable driver number :", sum(non_actionable_drivers_count))
return actionable_drivers, non_actionable_drivers
def apply_policy(self, policy):
'''
Apply policy to controllable agents
:param policy: list of policy for all roads.
:return:
'''
next_position_ratio = 0
total_counts = 0
for driver in self.actionable_drivers:
road = self.roads[driver.road_index]
neighbors = road.reachable_roads
if len(neighbors) == 0:
next_road_index = -1
elif len(neighbors) > 1:
# uniformly random (probability of epsilon)
if policy is None or (self.epsilon > 0 and np.random.binomial(1, self.epsilon) == 1):
next_road_index = np.random.choice(neighbors)
# random from stochastic policy (probability of 1 - epsilon)
else:
if road.actionable_driver_number == 1:
next_road_index = neighbors[np.argmax(policy[driver.road_index])]
else:
next_road_index = np.random.choice(neighbors, p=policy[driver.road_index])
else:
next_road_index = neighbors[0]
if next_road_index == -1:
self.drivers.remove(driver)
self.roads[driver.road_index].drivers.remove(driver)
else:
self.roads[driver.road_index].drivers.remove(driver)
self.roads[next_road_index].drivers.append(driver)
driver.last_road_index = driver.road_index
driver.road_index = next_road_index
if self.after_action_random:
driver.road_position = np.random.random() * self.roads[next_road_index].length
else:
road_speed_in_meter_per_min = self.roads[next_road_index].speed * 1000.0 / 60.0
x = max(0.0, driver.movable_time - 0.3) * road_speed_in_meter_per_min
max_x = 0.9 * self.roads[next_road_index].length
min_x = 0.1 * self.roads[next_road_index].length
x = max(min(x, max_x), min_x)
next_position_ratio += (x / (self.roads[next_road_index].length + 0.01))
total_counts += 1
driver.road_position = x
driver.movable_time = 0
if self.verbose and not self.after_action_random:
print("After movement position ratio average:", next_position_ratio / total_counts)
def current_total_call_number(self):
n = 0
for road in self.roads:
n += len(road.calls)
return n
def current_total_driver_number(self):
online = 0
available = 0
for driver in self.drivers:
if driver.is_online():
online += 1
else:
available += 1
return online + available, online, available
def onoff_drivers(self):
'''
Add or remove drivers to fit with total driver number.
:return:
'''
if self.total_driver_number_per_time is not None:
expected_driver_number = self.total_driver_number_per_time.get_total_driver_number_at(self.city_time)
expected_driver_number *= self.driver_coefficient
expected_driver_number = int(expected_driver_number)
current_driver_number = len(self.drivers)
number_to_add = expected_driver_number - current_driver_number
# print("Expected: %d, real: %d" % (expected_driver_number, current_driver_number))
# remove
if number_to_add < 0:
to_remove_n = -number_to_add
random.shuffle(self.drivers)
to_remove = self.drivers[0:to_remove_n]
for driver in to_remove:
if not driver.is_online():
road = self.roads[driver.road_index]
road.drivers.remove(driver)
del self.drivers[0:to_remove_n]
# add
elif number_to_add > 0:
for i in range(number_to_add):
road = random.choice(self.roads)
driver = Driver(self.get_next_driver_id(), road.uuid, np.random.random() * road.length)
road.drivers.append(driver)
self.drivers.append(driver)
def reset(self):
'''
Clear all drivers, calls
:return:
'''
self.city_time = 0
for road_index in range(self.N):
road = self.roads[road_index]
road.drivers.clear()
road.calls.clear()
self.drivers.clear()
def get_next_driver_id(self):
self.driver_uuid += 1
return self.driver_uuid - 1
def initialize(self):
'''
Generate idle drivers/calls and assign calls
:return: initial state
'''
driver_distribution = self.driver_initializer.get_initial_distribution(self)
# generate idle drivers
for road_index in range(self.N):
number_of_drivers = int(driver_distribution[road_index]) #np.random.choice([0,1,2,3],p=[0.5,0.2,0.2,0.1])
road = self.roads[road_index]
for _ in range(number_of_drivers):
driver = Driver(self.get_next_driver_id(), road_index, np.random.random() * road.length)
road.drivers.append(driver)
self.drivers.append(driver)
# generate driving drivers
if self.total_driver_number_per_time is not None:
expected_driver_number = self.total_driver_number_per_time.get_total_driver_number_at(self.city_time)
expected_driver_number = int(expected_driver_number * self.driver_coefficient)
current_driver_number = len(self.drivers)
working_driver_number_at_the_first = int(expected_driver_number - current_driver_number)
working_driver_number_at_the_first = max(working_driver_number_at_the_first, 0)
print("Driving drivers at the first", working_driver_number_at_the_first)
for i in range(working_driver_number_at_the_first):
driver = Driver(self.get_next_driver_id(), None, None)
duration = int(np.random.randint(0, 30, 1))
end_id = int(np.random.randint(self.N))
end_road = self.roads[end_id]
ep = np.random.random() * end_road.length
call = Call(0, end_id, 0, ep, 0, 5, 1, duration)
call.served_time = 0
driver.assign_call(call)
self.drivers.append(driver)
print("City initialized with total %d drivers" % len(self.drivers))
self.generate_calls(is_initialize=True)
self.assign_calls()
self.set_speed()
return self.get_observation()
def step(self, policy):
'''
Single update cycle.
:param policy: list of policy for all roads.
:return: next state, assigned call number, missed call number
'''
self.charge_drive_time()
total_call_number_before_assign = self.current_total_call_number()
self.actionable_drivers, self.non_actionable_drivers = self.get_actionable_drivers()
self.apply_policy(policy)
assigned_call_number = self.assign_calls()
self.city_time += 1
t, a, b = self.current_total_driver_number()
if self.verbose:
print(self.city_time)
print("Total driver %d, online %d, available %d" % (t, a, b))
print("current total call %d, assigned %d, percentage %.4f percent" % (total_call_number_before_assign,
assigned_call_number,
assigned_call_number / (total_call_number_before_assign + 1e-9) * 100))
before = self.current_total_call_number()
self.update_old_calls()
after = self.current_total_call_number()
missed_call_number = before - after
self.generate_calls()
self.update_drivers_status()
self.onoff_drivers()
self.set_speed()
next_state = self.get_observation()
return next_state, assigned_call_number, missed_call_number