-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathgraph_utils.py
381 lines (319 loc) · 12.2 KB
/
graph_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
import osmnx as ox
import networkx as nx
import numpy as np
import copy
from shapely.geometry import LineString, MultiLineString
from shapely import ops
import osmnx.utils_graph
def generate_square_multidi_graph(width, height, mean_distance=300, std=100, min_distance=100) ->nx.MultiDiGraph:
'''
Generate graph for simple grid case.
:param width: number of columns
:param height: number of rows
:param mean_distance: mean distance of the road
:param std: std of the road
:param min_distance: minimum distance of the road
:return: networkx Graph object
'''
G = nx.MultiDiGraph()
N = width * height
G.add_nodes_from(list(range(0, N)))
lengths = []
ebunchs = []
for i in range(width):
for j in range(height):
a = j * width + i
b = a + 1
c = a + width
# create roads on right direction.
if i < width - 1:
l_right = np.random.normal(mean_distance, std)
l_right = max(min_distance, l_right)
ebunchs.extend([(a, b, {'length': l_right,'u':a, 'v':b}),
(b, a, {'length': l_right,'v':b, 'u':a})])
lengths.extend([l_right, l_right])
# create roads on bottom direction.
if j < height - 1:
l_down = np.random.normal(mean_distance, std)
l_down = max(min_distance, l_down)
ebunchs.extend([(a, c, {'length': l_down, 'u': a, 'v': c}),
(c, a, {'length': l_down, 'v': c, 'u': a})])
lengths.extend([l_down, l_down])
G.add_edges_from(ebunchs)
return G
def check_highway_type_is_to_be_removed(highway_type, remove_list=None):
'''
Checks whether highway type is to be removed type.
:param highway_type: This can be both string of list of strings.
:param remove_list: A list of to be removed types. For details, check https://wiki.openstreetmap.org/wiki/Key:highway.
:return: True for remove false for not remove.
'''
if remove_list is None:
remove_list = ['residential',
'living_street',
'rest_area',
#'trunk',
#'motorway',
#'motorway_link',
#'trunk_link',
#'primary_link',
#'secondary_link',
#'tertiary_link',
'road',
'bus_guideway',
'disused',
'sidewalk',
'crossing'
]
if type(highway_type) == list:
for h in highway_type:
if h in remove_list:
return True
return False
return highway_type in remove_list
def get_all_types(G: nx.MultiDiGraph):
'''
:param G: Graph
:return: All 'highway' types in the road network.
'''
highway_type_set = set()
for e in G.edges(data=True):
u, v, info = e
highway_type = info['highway']
if type(highway_type) == list:
for h in highway_type:
highway_type_set.add(h)
else:
highway_type_set.add(highway_type)
return highway_type_set
def print_graph_info(G):
print("Number of nodes: %d, Number of edges: %d" % (G.number_of_nodes(), G.number_of_edges()))
# Functions for graph simplification
def simplify_graph_remove_unimportant_roads(G_original: nx.MultiDiGraph, min_length=1000):
'''
Removes all unimportant roads.
:param G_original: networkx graph object.
:return: SImplified networkx graph object.
'''
G = G_original.copy()
to_remove = []
for e in list(G.edges(data=True, keys=True)):
u, v, i, info = e
highway_type = info['highway']
if check_highway_type_is_to_be_removed(highway_type) and info['length'] < min_length:
to_remove.append((u, v, i))
G.remove_edges_from(to_remove)
G = osmnx.utils_graph.remove_isolated_nodes(G)
# print(get_all_types(G))
G_component = osmnx.utils_graph.get_largest_component(G, strongly=True)
print_graph_info(G_original)
print_graph_info(G)
print_graph_info(G_component)
return G_component
def simplify_graph_remove_boundary_nodes(G_original: nx.MultiDiGraph):
'''
Removes dangling roads at the boundary.
:param G_original: networkx graph object.
:return: SImplified networkx graph object.
'''
G = G_original.copy()
while True:
to_remove = []
for n, info in list(G.nodes(data=True)):
ins = list(G.predecessors(n))
outs = list(G.successors(n))
if G.in_degree(n) == 1 and G.out_degree(n) == 1 and len(ins) == 1 and len(outs) == 1 and ins[0] == outs[0]:
to_remove.append(n)
if len(to_remove) == 0:
break
G.remove_nodes_from(to_remove)
print("Boundary Removed")
print_graph_info(G)
return G
def simplify_graph_remove11(G_original: nx.MultiDiGraph):
'''
Simplifies ->-> shaped road to ->.
:param G_original: networkx graph object.
:return: SImplified networkx graph object.
'''
G = G_original.copy()
def set_geometry(e):
u, v, _, edge_info = e
if 'geometry' not in edge_info:
ux = G.nodes[u]['x']
uy = G.nodes[u]['y']
vx = G.nodes[v]['x']
vy = G.nodes[v]['y']
edge_info['geometry'] = LineString([[ux, uy], [vx, vy]])
while True:
to_remove = []
for n, info in list(G.nodes(data=True)):
# a -> b -> c
outs = list(G.out_edges(n, data=True, keys=True))
ins = list(G.in_edges(n, data=True, keys=True))
if len(ins) == 1 and len(outs) == 1: # G.in_degree(n) == 2 and G.out_degree(n) == 2 and len(ins) ==2 and len(outs) == 2:
a = ins[0][0]
b = n
c = outs[0][1]
if a!=c and b!=c and a!=b:
for e in (ins + outs):
set_geometry(e)
l_ab = ins[0][3]
l_bc = outs[0][3]
l_ac = copy.deepcopy(l_ab)
gac = MultiLineString([l_ab['geometry'], l_bc['geometry']])
gac = ops.linemerge(gac)
l_ac['length'] = l_ab['length'] + l_bc['length']
l_ac['geometry'] = gac
G.add_edge(a, c, **l_ac)
G.remove_node(b)
to_remove.append(b)
if len(to_remove) == 0:
break
print("-- Removed")
print_graph_info(G)
return G
def simplify_graph_remove22(G_original: nx.MultiDiGraph):
'''
Simplifies <=><=> shaped road to <=>.
:param G_original: networkx graph object.
:return: SImplified networkx graph object.
'''
G = G_original.copy()
def set_geometry(e):
u, v, _, edge_info = e
if 'geometry' not in edge_info:
ux = G.nodes[u]['x']
uy = G.nodes[u]['y']
vx = G.nodes[v]['x']
vy = G.nodes[v]['y']
edge_info['geometry'] = LineString([[ux, uy], [vx, vy]])
while True:
to_remove = []
for n in list(G.nodes()):
# a0 -> b0 -> c0
# a1 <- b1 <- c1
outs = list(G.out_edges(n, data=True, keys=True))
ins = list(G.in_edges(n, data=True, keys=True))
if len(ins) == 2 and len(outs) == 2:
ins.sort(key=lambda x: x[0])
outs.sort(key=lambda x: x[1])
if ins[0][0] == outs[0][1] and ins[1][0] == outs[1][1] and ins[0][0] != outs[1][1] and (n!=ins[0][0] and n!=ins[1][0]):
a = ins[0][0]
c = ins[1][0]
b = n
for e in ins:
set_geometry(e)
for e in outs:
set_geometry(e)
l_ab = ins[0][3]
l_cb = ins[1][3]
l_ba = outs[0][3]
l_bc = outs[1][3]
l_ac = copy.deepcopy(l_ab)
l_ca = copy.deepcopy(l_cb)
gac = MultiLineString([l_ab['geometry'], l_bc['geometry']])
gac = ops.linemerge(gac)
gca = MultiLineString([l_cb['geometry'], l_ba['geometry']])
gca = ops.linemerge(gca)
l_ac['length'] = l_ab['length'] + l_bc['length']
l_ac['geometry'] = gac
l_ca['length'] = l_cb['length'] + l_ba['length']
l_ca['geometry'] = gca
G.remove_node(n)
G.add_edge(a, c, **l_ac)
G.add_edge(c, a, **l_ca)
to_remove.append(b)
if len(to_remove) == 0:
break
print("== Removed")
print_graph_info(G)
return G
def simplify_graph_merge_short(G_original: nx.MultiDiGraph, threshold=100):
'''
Simplifies graph by merging short roads.
:param G_original: networkx graph object.
:param threshold: Merging threshold.
:return: SImplified networkx graph object.
'''
G = G_original.copy()
for n, info in list(G.nodes(data=True)):
ins = list(G.in_edges(n, data=True, keys=True))
outs = list(G.out_edges(n, data=True, keys=True))
removed = False
for e in ins:
u, _, i, info = e
if info['length'] < threshold:
merge_nodes(G, n, u)
G.remove_node(n)
removed = True
break
if not removed:
for e in outs:
_, v, i, info = e
if info['length'] < threshold:
merge_nodes(G, n, v)
G.remove_node(n)
break
print("Short removed")
print_graph_info(G)
#print("%d to %d by remove ." % (G_original.number_of_nodes(), G.number_of_nodes()))
return G
def merge_nodes(G, node, new_node):
"""
Merges the selected `nodes` of the graph G into one `new_node`,
meaning that all the edges that pointed to or from one of these
`nodes` will point to or from the `new_node`.
attr_dict and **attr are defined as in `G.add_node`.
"""
ins = list(G.in_edges(node, data=True, keys=True))
outs = list(G.out_edges(node, data=True, keys=True))
for n1, n2, _, data in ins + outs:
# For all edges related to one of the nodes to merge,
# make an edge going to or coming from the `new gene`.
if n1 == node and n2!=new_node:
G.add_edge(new_node, n2, **data)
elif n2 == node and n1!=new_node:
G.add_edge(n1, new_node, **data)
def linefy_all_geom(G_original: nx.MultiDiGraph):
'''
Simplifies the shape shown in the image.
:param G_original: networkx graph object.
:return: SImplified networkx graph object.
'''
G = G_original.copy()
for e in G.edges(data=True):
u, v, info = e
ax = G.nodes[u]['x']
ay = G.nodes[u]['y']
bx = G.nodes[v]['x']
by = G.nodes[v]['y']
info['geometry'] = LineString([[ax, ay], [bx, by]])
return G
# import queue
# def add_direct_edges(G_original: nx.MultiDiGraph, threshold = 2000):
# G = G_original.copy()
# for n in G.nodes:
# q = queue.Queue()
# neighbors = list(G.successors(n))
# q.put(n)
# #neighbors = set()
# distances = {}
# distances[n] = 0
# while q.qsize() > 0:
# v = q.get()
# for e in list(G.out_edges(v, data=True, keys=True)):
# _, successor, _, info = e
# if (successor not in distances or distances[v] + info['length'] < distances[successor])\
# and distances[v] + info['length'] < threshold:
# q.put(successor)
# #neighbors.add(successor)
# distances[successor] = distances[v] + info['length']
#
# for successor in distances.keys():
# if successor not in neighbors:
# G.add_edge(n, successor, length=distances[successor])
#
# print("%d to %d by add edge ." % (G_original.number_of_edges(), G.number_of_edges()))
#
# return G