forked from baldrech/MizerEvo
-
Notifications
You must be signed in to change notification settings - Fork 0
/
methods.r
1148 lines (1068 loc) · 58.5 KB
/
methods.r
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
#function used for the time projection
#----------------------------------------------------------------
# Class specification and constructors for the simulation class
#----------------------------------------------------------------
#check if there is an error somewhere in the object (mizer param)
valid_MizerSim <- function(object){
errors <- character()
validObject(object@params)
# array dimensions
if(length(dim(object@n)) != 3){
msg <- "n slot must have three dimensions"
errors <- c(errors, msg)
}
if(length(dim(object@effort)) != 2){
msg <- "effort slot must have two dimensions"
errors <- c(errors, msg)
}
if(length(dim(object@n_pp)) != 2){
msg <- "n_pp slot must have two dimensions"
errors <- c(errors, msg)
}
# Check time dimension is good - size, dim name, and names
if(!all(c(dim(object@n)[1]-1,dim(object@n_pp)[1]-1) == dim(object@effort)[1])){
msg <- "First dimension of effort, n and n_pp slots must be the same length (n and n_pp are + 1 longer)"
errors <- c(errors, msg)
}
if(!all(c(names(dimnames(object@n))[1], names(dimnames(object@n_pp))[1], names(dimnames(object@effort))[1]) == "time")){
msg <- "First dimension of effort, n and n_pp slots must be called 'time'"
errors <- c(errors, msg)
}
if(!all(c(names(dimnames(object@n))[1], names(dimnames(object@n_pp))[1]) ==
names(dimnames(object@effort))[1])){
msg <- "First dimension of effort, n and n_pp slots must have the same names"
errors <- c(errors, msg)
}
# species dimension of n
if(dim(object@n)[2] != dim(object@params@psi)[1]){
msg <- "Second dimension of n slot must have same length as the species names in the params slot"
errors <- c(errors, msg)
}
if(names(dimnames(object@n))[2] != "sp"){
msg <- "Second dimension of n slot must be called 'sp'"
errors <- c(errors, msg)
}
if(!all(names(dimnames(object@n))[2] == names(dimnames(object@params@psi))[1])){
msg <- "Second dimension of n slot must have same species names as in the params slot"
errors <- c(errors, msg)
}
# w dimension of n
if(dim(object@n)[3] != length(object@params@w)){
msg <- "Third dimension of n slot must have same length as w in the params slot"
errors <- c(errors, msg)
}
if(names(dimnames(object@n))[3] != "w"){
msg <- "Third dimension of n slot must be called 'w'"
errors <- c(errors, msg)
}
if(!all(names(dimnames(object@n))[3] == names(dimnames(object@params@psi))[2])){
msg <- "Third dimension of n slot must have same size names as in the params slot"
errors <- c(errors, msg)
}
# w dimension of n_pp
if(dim(object@n_pp)[2] != length(object@params@w_full)){
msg <- "Second dimension of n_pp slot must have same length as w_full in the params slot"
errors <- c(errors, msg)
}
if(names(dimnames(object@n_pp))[2] != "w"){
msg <- "Second dimension of n_pp slot must be called 'w'"
errors <- c(errors, msg)
}
if(!all(dimnames(object@n_pp)$w == names(object@params@rr_pp))){
msg <- "Second dimension of n_pp slot must have same size names as rr_pp in the params slot"
errors <- c(errors, msg)
}
# gear dimension of effort
if(dim(object@effort)[2] != dim(object@params@catchability)[1]){
msg <- "Second dimension of effort slot must have same number of gears as in the params slot"
errors <- c(errors, msg)
}
if(names(dimnames(object@effort))[2] != "gear"){
msg <- "Second dimension of effort slot must be called 'gear'"
errors <- c(errors, msg)
}
if(!all(names(dimnames(object@effort))[2] == names(dimnames(object@params@catchability)[1]))){
msg <- "Second dimension of effort slot must have same gear names as in the params slot"
errors <- c(errors, msg)
}
if (length(errors) == 0) TRUE else errors
}
#set a new class, the simulation class
setClass("MizerSim",
representation(
params = "MizerParams",
n = "array",
effort = "array",
n_pp = "array"
),
prototype = prototype(
params = new("MizerParams"),
n = array(NA,dim=c(1,1,1), dimnames = list(time = NULL, sp = NULL, w = NULL)),
effort = array(NA,dim=c(1,1), dimnames = list(time = NULL, gear = NULL)),
n_pp = array(NA,dim=c(1,1), dimnames = list(time = NULL, w = NULL))
),
validity = valid_MizerSim
)
setValidity("MizerSim", valid_MizerSim)
remove(valid_MizerSim)
# the constructor
MizerSim <- function(object, t_dimnames = NA, t_max = 100, t_save=1, ...){
# If the dimnames for the time dimension not passed in, calculate them from t_max and t_save
if (any(is.na(t_dimnames))){
if((t_max %% t_save) != 0)
stop("t_max must be divisible by t_save with no remainder")
t_dimnames <- seq(from = t_save, to = t_max, by = t_save)
}
if (is.character(t_dimnames)){
stop("The t_dimnames argument must be numeric.")
}
no_sp <- nrow(object@species_params)
species_names <- dimnames(object@psi)$sp
no_w <- length(object@w)
w_names <- dimnames(object@psi)$w
t_dimnames_n <- c(t_dimnames[1] - (t_dimnames[2]-t_dimnames[1]),t_dimnames) # N is 1 bigger because it holds the initial population
t_dim_n <- length(t_dimnames_n)
t_dim_effort <- length(t_dimnames)
array_n <- array(NA, dim = c(t_dim_n, no_sp, no_w), dimnames = list(time = t_dimnames_n, sp = species_names, w = w_names))
no_gears <- dim(object@selectivity)[1]
gear_names <- dimnames(object@selectivity)$gear
array_effort <- array(NA, dim = c(t_dim_effort, no_gears), dimnames = list(time = t_dimnames, gear = gear_names))
no_w_full <- length(object@w_full)
w_full_names <- names(object@rr_pp)
array_n_pp <- array(NA, dim = c(t_dim_n, no_w_full), dimnames = list(time=t_dimnames_n, w = w_full_names))
sim <- new('MizerSim',
n = array_n,
effort = array_effort,
n_pp = array_n_pp,
params = object)
return(sim)
}
#----------------------------------------------------------------
# Phi prey
#----------------------------------------------------------------
#' getPhiPrey method for the size based model
#'
#' Calculates the amount of food exposed to each predator by predator size.
#' This method is used by the \code{\link{project}} method for performing simulations.
#' @param object An \code{MizerParams} object
#' @param n A matrix of species abundances (species x size)
#' @param n_pp A vector of the background abundance by size
#'
#' @return A two dimensional array (predator species x predator size)
#' @seealso \code{\link{project}}
#' @export
#' @docType methods
#' @rdname getPhiPrey-methods
#' @aliases getPhiPrey-method
#' @examples
#' \dontrun{
#' data(NS_species_params_gears)
#' data(inter)
#' params <- MizerParams(NS_species_params_gears, inter)
#' # With constant fishing effort for all gears for 20 time steps
#' sim <- project(params, t_max = 20, effort = 0.5)
#' n <- sim@@n[21,,]
#' n_pp <- sim@@n_pp[21,]
#' getPhiPrey(params,n,n_pp)
#' }
setGeneric('getPhiPrey', function(object, n, n_pp, opt = T,...)
standardGeneric('getPhiPrey'))
#' @rdname getPhiPrey-methods
#' @aliases getPhiPrey,MizerParams,matrix,numeric-method
setMethod('getPhiPrey', signature(object='MizerParams', n = 'matrix', n_pp='numeric'),
function(object, n, n_pp, opt = T, ...){
# cat("In getPhiPrey\n")
# Check n dims
if(dim(n)[1] != dim(object@interaction)[1])
stop("n does not have the right number of species (first dimension)")
if(dim(n)[2] != length(object@w))
stop("n does not have the right number of size groups (second dimension)")
if(length(n_pp) != length(object@w_full))
stop("n_pp does not have the right number of size groups")
if (opt){
n_eff_prey <- object@interaction[1,] %*% n * object@w *object@dw
idx_sp <- (length(object@w_full) - length(object@w) + 1):length(object@w_full)
phi_prey_species_1 <- rowSums(sweep(object@pred_kernel[1,,idx_sp,drop=FALSE],c(1,3),n_eff_prey,"*"),dims=2)
phi_prey_species <- matrix(rep(phi_prey_species_1,each=dim(n)[1]),nrow=dim(n)[1], dimnames = dimnames(n))
names(dimnames(phi_prey_species)) <- c("sp","w_pred")
phi_prey_background_1 <- rowSums(sweep(object@pred_kernel[1,,],2,object@dw_full*object@w_full*n_pp,"*"))
phi_prey_background <- matrix(rep(phi_prey_background_1,each=dim(n)[1]),nrow=dim(n)[1], dimnames = dimnames(n))
names(dimnames(phi_prey_background)) <- c("sp","w_pred")
} else{
# n_eff_prey is the total prey abundance by size exposed to each predator
# (prey not broken into species - here we are just working out how much a predator eats - not which species are being eaten - that is in the mortality calculation
n_eff_prey <- sweep(object@interaction %*% n, 2, object@w * object@dw, "*")
# Quick reference to just the fish part of the size spectrum
idx_sp <- (length(object@w_full) - length(object@w) + 1):length(object@w_full)
# predKernal is predator x predator size x prey size
# So multiply 3rd dimension of predKernal by the prey abundance
# Then sum over 3rd dimension to get total eaten by each predator by predator size
phi_prey_species <- rowSums(sweep(object@pred_kernel[,,idx_sp,drop=FALSE],c(1,3),n_eff_prey,"*"),dims=2)
# Eating the background
phi_prey_background <- rowSums(sweep(object@pred_kernel,3,object@dw_full*object@w_full*n_pp,"*"),dims=2)
}
return(phi_prey_species+phi_prey_background)
})
# my own phi prey function to get the details of fish and background
setGeneric('getPhi', function(object, n, n_pp,...)
standardGeneric('getPhi'))
#' @rdname getPhiPrey-methods
#' @aliases getPhiPrey,MizerParams,matrix,numeric-method
setMethod('getPhi', signature(object='MizerParams', n = 'matrix', n_pp='numeric'),
function(object, n, n_pp, ...){
# cat("In getPhiPrey\n")
# Check n dims
if(dim(n)[1] != dim(object@interaction)[1])
stop("n does not have the right number of species (first dimension)")
if(dim(n)[2] != length(object@w))
stop("n does not have the right number of size groups (second dimension)")
if(length(n_pp) != length(object@w_full))
stop("n_pp does not have the right number of size groups")
# n_eff_prey is the total prey abundance by size exposed to each predator
# (prey not broken into species - here we are just working out how much a predator eats - not which species are being eaten - that is in the mortality calculation
n_eff_prey <- sweep(object@interaction %*% n, 2, object@w * object@dw, "*")
# Quick reference to just the fish part of the size spectrum
idx_sp <- (length(object@w_full) - length(object@w) + 1):length(object@w_full)
# predKernal is predator x predator size x prey size
# So multiply 3rd dimension of predKernal by the prey abundance
# Then sum over 3rd dimension to get total eaten by each predator by predator size
phi_prey_species <- rowSums(sweep(object@pred_kernel[,,idx_sp,drop=FALSE],c(1,3),n_eff_prey,"*"),dims=2)
# Eating the background
phi_prey_background <- rowSums(sweep(object@pred_kernel,3,object@dw_full*object@w_full*n_pp,"*"),dims=2)
#return(phi_prey_species+phi_prey_background)
return(list(phi_prey_species,phi_prey_background))
})
#----------------------------------------------------------------
# Feeding Level
#----------------------------------------------------------------
# The amount of food consumed by a predator, by each predator size
#' getFeedingLevel method for the size based model
#'
#' Calculates the amount of food consumed by a predator by predator size based on food availability, search volume and maximum intake.
#' This method is used by the \code{\link{project}} method for performing simulations.
#' @param object A \code{MizerParams} or \code{MizerSim} object
#' @param n A matrix of species abundance (species x size). Only used if \code{object} argument is of type \code{MizerParams}.
#' @param n_pp A vector of the background abundance by size. Only used if \code{object} argument is of type \code{MizerParams}.
#' @param phi_prey The PhiPrey matrix (optional) of dimension no. species x no. size bins. If not passed in, it is calculated internally using the \code{getPhiPrey()} method. Only used if \code{object} argument is of type \code{MizerParams}.
#' @param time_range Subset the returned fishing mortalities by time. The time range is either a vector of values, a vector of min and max time, or a single value. Default is the whole time range. Only used if the \code{object} argument is of type \code{MizerSim}.
#' @param drop should extra dimensions of length 1 in the output be dropped, simplifying the output. Defaults to TRUE
#'
#' @note
#' If a \code{MizerParams} object is passed in, the method returns a two dimensional array (predator species x predator size) based on the abundances also passed in.
#' If a \code{MizerSim} object is passed in, the method returns a three dimensional array (time step x predator species x predator size) with the feeding level calculated at every time step in the simulation.
#' @seealso \code{\link{getPhiPrey}}
#' @export
#' @docType methods
#' @rdname getFeedingLevel-methods
#' @aliases getFeedingLevel-method
#' @examples
#' \dontrun{
#' data(NS_species_params_gears)
#' data(inter)
#' params <- MizerParams(NS_species_params_gears, inter)
#' # With constant fishing effort for all gears for 20 time steps
#' sim <- project(params, t_max = 20, effort = 0.5)
#' # Get the feeding level at one time step
#' n <- sim@@n[21,,]
#' n_pp <- sim@@n_pp[21,]
#' fl <- getFeedingLevel(params,n,n_pp)
#' # Get the feeding level at all saved time steps
#' fl <- getFeedingLevel(sim)
#' # Get the feeding level for time 15 - 20
#' fl <- getFeedingLevel(sim, time_range = c(15,20))
#' }
setGeneric('getFeedingLevel', function(object, n, n_pp, phi_prey, ...)
standardGeneric('getFeedingLevel'))
#' @rdname getFeedingLevel-methods
#' @aliases getFeedingLevel,MizerParams,matrix,numeric,matrix-method
setMethod('getFeedingLevel', signature(object='MizerParams', n = 'matrix', n_pp='numeric', phi_prey='matrix'),
function(object, n, n_pp, phi_prey, ...){
# Check dims of phi_prey
if (!all(dim(phi_prey) == c(nrow(object@species_params),length(object@w)))){
stop("phi_prey argument must have dimensions: no. species (",nrow(object@species_params),") x no. size bins (",length(object@w),")")
}
# encountered food = available food * search volume
encount <- object@search_vol * phi_prey
# calculate feeding level
f <- encount/(encount + object@intake_max)
return(f)
})
#' @rdname getFeedingLevel-methods
#' @aliases getFeedingLevel,MizerParams,matrix,numeric,missing-method
setMethod('getFeedingLevel', signature(object='MizerParams', n = 'matrix', n_pp='numeric', phi_prey='missing'),
function(object, n, n_pp, ...){
phi_prey <- getPhiPrey(object, n=n, n_pp=n_pp)
# encountered food = available food * search volume
#encount <- object@search_vol * phi_prey
# calculate feeding level
#f <- encount/(encount + object@intake_max)
f <- getFeedingLevel(object=object, n=n, n_pp=n_pp, phi_prey=phi_prey)
return(f)
})
#' @rdname getFeedingLevel-methods
#' @aliases getFeedingLevel,MizerSim,missing,missing,missing-method
setMethod('getFeedingLevel', signature(object='MizerSim', n = 'missing', n_pp='missing', phi_prey='missing'),
function(object, time_range=dimnames(object@n)$time, drop=FALSE, ...){
time_elements <- get_time_elements(object,time_range)
feed_time <- aaply(which(time_elements), 1, function(x){
# Necessary as we only want single time step but may only have 1 species which makes using drop impossible
n <- array(object@n[x,,],dim=dim(object@n)[2:3])
dimnames(n) <- dimnames(object@n)[2:3]
feed <- getFeedingLevel(object@params, n=n, n_pp = object@n_pp[x,])
return(feed)}, .drop=drop)
return(feed_time)
})
#---
# Critical feeding level
#---
setGeneric('getCFeedingLevel', function(object, n, n_pp, phi_prey, ...)
standardGeneric('getCFeedingLevel'))
#' @rdname getCFeedingLevel-methods
#' @aliases getFeedingLevel,MizerParams,matrix,numeric,matrix-method
setMethod('getCFeedingLevel', signature(object='MizerParams', n = 'matrix', n_pp='numeric', phi_prey='matrix'),
function(object, n, n_pp, phi_prey, ...){
# Check dims of phi_prey
if (!all(dim(phi_prey) == c(nrow(object@species_params),length(object@w)))){
stop("phi_prey argument must have dimensions: no. species (",nrow(object@species_params),") x no. size bins (",length(object@w),")")
}
# encountered food = available food * search volume
#encount <- object@search_vol * phi_prey - object@std_metab
encount <- object@std_metab
# calculate feeding level
f <- encount/(encount + object@intake_max)
return(f)
})
#' @rdname getCFeedingLevel-methods
#' @aliases getFeedingLevel,MizerParams,matrix,numeric,missing-method
setMethod('getCFeedingLevel', signature(object='MizerParams', n = 'matrix', n_pp='numeric', phi_prey='missing'),
function(object, n, n_pp, ...){
phi_prey <- getPhiPrey(object, n=n, n_pp=n_pp)
# encountered food = available food * search volume
#encount <- object@search_vol * phi_prey
# calculate feeding level
#f <- encount/(encount + object@intake_max)
f <- getCFeedingLevel(object=object, n=n, n_pp=n_pp, phi_prey=phi_prey)
return(f)
})
#' @rdname getCFeedingLevel-methods
#' @aliases getFeedingLevel,MizerSim,missing,missing,missing-method
setMethod('getCFeedingLevel', signature(object='MizerSim', n = 'missing', n_pp='missing', phi_prey='missing'),
function(object, time_range=dimnames(object@n)$time, drop=FALSE, ...){
time_elements <- get_time_elements(object,time_range)
feed_time <- aaply(which(time_elements), 1, function(x){
# Necessary as we only want single time step but may only have 1 species which makes using drop impossible
n <- array(object@n[x,,],dim=dim(object@n)[2:3])
dimnames(n) <- dimnames(object@n)[2:3]
feed <- getCFeedingLevel(object@params, n=n, n_pp = object@n_pp[x,])
return(feed)}, .drop=drop)
return(feed_time)
})
#----------------------------------------------------------------
# Predation rate
#----------------------------------------------------------------
#' getPredRate method for the size based model
#'
#' Calculates the predation rate of each predator species at size on prey size.
#' This method is used by the \code{\link{project}} method for performing simulations. In the simulations, it is combined with the interaction matrix (see \code{\link{MizerParams}}) to calculate the realised predation mortality (see \code{\link{getM2}}).
#' @param object A \code{MizerParams} object.
#' @param n A matrix of species abundance (species x size).
#' @param n_pp A vector of the background abundance by size.
#' @param feeding_level The current feeding level (optional). A matrix of size no. species x no. size bins. If not supplied, is calculated internally using the \code{getFeedingLevel()} method.
#'
#' @return A three dimensional array (predator species x predator size x prey size)
#' @export
#' @seealso \code{\link{project}}, \code{\link{getM2}}, \code{\link{getFeedingLevel}} and \code{\link{MizerParams}}
#' @docType methods
#' @rdname getPredRate-methods
#' @aliases getPredRate-method
#' @examples
#' \dontrun{
#' data(NS_species_params_gears)
#' data(inter)
#' params <- MizerParams(NS_species_params_gears, inter)
#' # With constant fishing effort for all gears for 20 time steps
#' sim <- project(params, t_max = 20, effort = 0.5)
#' # Get the feeding level at one time step
#' n <- sim@@n[21,,]
#' n_pp <- sim@@n_pp[21,]
#' getPredRate(params,n,n_pp)
#' }
setGeneric('getPredRate', function(object, n, n_pp, feeding_level,...)
standardGeneric('getPredRate'))
#' @rdname getPredRate-methods
#' @aliases getPredRate,MizerParams,matrix,numeric,matrix-method
setMethod('getPredRate', signature(object='MizerParams', n = 'matrix', n_pp='numeric', feeding_level = 'matrix'),
function(object, n, n_pp, feeding_level, ...){
if (!all(dim(feeding_level) == c(nrow(object@species_params),length(object@w)))){
stop("feeding_level argument must have dimensions: no. species (",nrow(object@species_params),") x no. size bins (",length(object@w),")")
}
n_total_in_size_bins <- sweep(n, 2, object@dw, '*')
pred_rate <- sweep(object@pred_kernel,c(1,2),(1-feeding_level)*object@search_vol*n_total_in_size_bins,"*")
return(pred_rate)
})
#' @rdname getPredRate-methods
#' @aliases getPredRate,MizerParams,matrix,numeric,missing-method
setMethod('getPredRate', signature(object='MizerParams', n = 'matrix', n_pp='numeric', feeding_level = 'missing'),
function(object, n, n_pp, ...){
n_total_in_size_bins <- sweep(n, 2, object@dw, '*')
feeding_level <- getFeedingLevel(object, n=n, n_pp=n_pp)
#pred_rate <- sweep(object@pred_kernel,c(1,2),(1-f)*object@search_vol*n_total_in_size_bins,"*")
pred_rate <- getPredRate(object=object, n=n, n_pp=n_pp, feeding_level = feeding_level)
return(pred_rate)
})
#----------------------------------------------------------------
# M2, mortality by predation
#----------------------------------------------------------------
# This uses the predation rate which is also used in M2background
# Too much overlap? Inefficient? Same thing is calculated twice
#' getM2 method for the size based model
#'
#' Calculates the total predation mortality on each prey species by prey size.
#' This method is used by the \code{\link{project}} method for performing simulations.
#' @param object A \code{MizerParams} or \code{MizerSim} object.
#' @param n A matrix of species abundance (species x size). Only used if \code{object} argument is of type \code{MizerParams}.
#' @param n_pp A vector of the background abundance by size. Only used if \code{object} argument is of type \code{MizerParams}.
#' @param pred_rate An array of predation rates of dimension no. sp x no. community size bins x no. of size bins in whole spectra (i.e. community + background, the w_full slot). The array is optional. If it is not provided it is calculated by the \code{getPredRate()} method.
#' @param time_range Subset the returned fishing mortalities by time. The time range is either a vector of values, a vector of min and max time, or a single value. Default is the whole time range. Only used if the \code{object} argument is of type \code{MizerSim}.
#' @param drop Only used when object is of type \code{MizerSim}. Should dimensions of length 1 in the output be dropped, simplifying the output. Defaults to TRUE
#'
#' @note
#' If a \code{MizerParams} object is passed in, the method returns a two dimensional array (prey species x prey size) based on the abundances also passed in.
#' If a \code{MizerSim} object is passed in, the method returns a three dimensional array (time step x prey species x prey size) with the predation mortality calculated at every time step in the simulation.
#' @seealso \code{\link{getPredRate}} and \code{\link{project}}.
#' @export
#' @docType methods
#' @rdname getM2-methods
#' @aliases getM2-method
#' @examples
#' \dontrun{
#' data(NS_species_params_gears)
#' data(inter)
#' params <- MizerParams(NS_species_params_gears, inter)
#' # With constant fishing effort for all gears for 20 time steps
#' sim <- project(params, t_max = 20, effort = 0.5)
#' # Get M2 at one time step
#' n <- sim@@n[21,,]
#' n_pp <- sim@@n_pp[21,]
#' getM2(params,n,n_pp)
#' # Get M2 at all saved time steps
#' getM2(sim)
#' # Get M2 over the time 15 - 20
#' getM2(sim, time_range = c(15,20))
#' }
setGeneric('getM2', function(object, n, n_pp, pred_rate,...)
standardGeneric('getM2'))
#' @rdname getM2-methods
#' @aliases getM2,MizerParams,matrix,numeric,array-method
setMethod('getM2', signature(object='MizerParams', n = 'matrix', n_pp='numeric', pred_rate = 'array'),
function(object, n, n_pp, pred_rate, ...){
if ((!all(dim(pred_rate) == c(nrow(object@species_params),length(object@w),length(object@w_full)))) | (length(dim(pred_rate))!=3)){
stop("pred_rate argument must have 3 dimensions: no. species (",nrow(object@species_params),") x no. size bins (",length(object@w),") x no. size bins in community + background (",length(object@w_full),")")
}
# get the element numbers that are just species
idx_sp <- (length(object@w_full) - length(object@w) + 1):length(object@w_full)
# Interaction is predator x prey so need to transpose so it is prey x pred
# Sum pred_kernel over predator sizes to give total predation rate of each predator on each prey size
m2 <- t(object@interaction) %*% colSums(aperm(pred_rate, c(2,1,3)),dims=1)[,idx_sp]
return(m2)
})
#' @rdname getM2-methods
#' @aliases getM2,MizerParams,matrix,numeric,missing-method
setMethod('getM2', signature(object='MizerParams', n = 'matrix', n_pp='numeric', pred_rate = 'missing'),
function(object, n, n_pp, ...){
pred_rate <- getPredRate(object,n=n,n_pp=n_pp)
m2 <- getM2(object,n=n,n_pp=n_pp, pred_rate=pred_rate)
return(m2)
})
#' @rdname getM2-methods
#' @aliases getM2,MizerSim,missing,missing,missing-method
setMethod('getM2', signature(object='MizerSim', n = 'missing', n_pp='missing', pred_rate = 'missing'),
function(object, time_range=dimnames(object@n)$time, drop=TRUE, ...){
time_elements <- get_time_elements(object,time_range)
m2_time <- aaply(which(time_elements), 1, function(x){
n <- array(object@n[x,,],dim=dim(object@n)[2:3])
dimnames(n) <- dimnames(object@n)[2:3]
m2 <- getM2(object@params, n=n, n_pp = object@n_pp[x,])
return(m2)}, .drop=drop)
return(m2_time)
})
#----------------------------------------------------------------
# M2 background
#----------------------------------------------------------------
#'
#' Calculates the predation mortality on the background spectrum by prey size. Used by the \code{project} method for running size based simulations.
#' @param object A \code{MizerParams} object.
#' @param n A matrix of species abundance (species x size).
#' @param n_pp A vector of the background abundance by size.
#' @param pred_rate An array of predation rates of dimension no. sp x no. community size bins x no. of size bins in whole spectra (i.e. community + background, the w_full slot). The array is optional. If it is not provided it is calculated by the \code{getPredRate()} method.
#'
#' @return A vector of predation mortalities by background prey size.
#' @seealso \code{\link{project}} and \code{\link{getM2}}.
#' @export
#' @docType methods
#' @rdname getM2Background-methods
#' @aliases getM2Background-method
#' @examples
#' \dontrun{
#' data(NS_species_params_gears)
#' data(inter)
#' params <- MizerParams(NS_species_params_gears, inter)
#' # With constant fishing effort for all gears for 20 time steps
#' sim <- project(params, t_max = 20, effort = 0.5)
#' # Get M2 of the background spectrum at one time step
#' n <- sim@@n[21,,]
#' n_pp <- sim@@n_pp[21,]
#' getM2Background(params,n,n_pp)
#' }
setGeneric('getM2Background', function(object, n, n_pp, pred_rate,...)
standardGeneric('getM2Background'))
#' @rdname getM2Background-methods
#' @aliases getM2Background,MizerParams,matrix,numeric,array-method
setMethod('getM2Background', signature(object='MizerParams', n = 'matrix', n_pp='numeric', pred_rate='array'),
function(object, n, n_pp, pred_rate, ...){
if ((!all(dim(pred_rate) == c(nrow(object@species_params),length(object@w),length(object@w_full)))) | (length(dim(pred_rate))!=3)){
stop("pred_rate argument must have 3 dimensions: no. species (",nrow(object@species_params),") x no. size bins (",length(object@w),") x no. size bins in community + background (",length(object@w_full),")")
}
M2background <- colSums(pred_rate,dims=2)
return(M2background)
})
#' @rdname getM2Background-methods
#' @aliases getM2Background,MizerParams,matrix,numeric,missing-method
setMethod('getM2Background', signature(object='MizerParams', n = 'matrix', n_pp='numeric', pred_rate='missing'),
function(object, n, n_pp, ...){
pred_rate <- getPredRate(object,n=n,n_pp=n_pp)
M2background <- getM2Background(object, n=n, n_pp=n_pp, pred_rate=pred_rate)
return(M2background)
})
#----------------------------------------------------------------
# Fisheries mortality gear
#----------------------------------------------------------------
# getFMortGear
#' Get the fishing mortality by time, gear, species and size
#'
#' Calculates the fishing mortality by gear, species and size at each time step in the \code{effort} argument. Used by the \code{project} method to perform simulations.
#'
#' @param object A \code{MizerParams} object or a \code{MizerSim} object.
#' @param effort The effort of each fishing gear. Only needed if the object argument is of class \code{MizerParams}. See notes below.
#' @param time_range Subset the returned fishing mortalities by time. The time range is either a vector of values, a vector of min and max time, or a single value. Default is the whole time range. Only used if the \code{object} argument is of type \code{MizerSim}.
#'
#' @return An array. If the effort argument has a time dimension, or a \code{MizerSim} is passed in, the output array has four dimensions (time x gear x species x size). If the effort argument does not have a time dimension (i.e. it is a vector or a single numeric), the output array has three dimensions (gear x species x size).
#' @note Here: fishing mortality = catchability x selectivity x effort.
#'
#' The \code{effort} argument is only used if a \code{MizerParams} object is passed in. The \code{effort} argument can be a two dimensional array (time x gear), a vector of length equal to the number of gears (each gear has a different effort that is constant in time), or a single numeric value (each gear has the same effort that is constant in time). The order of gears in the \code{effort} argument must be the same the same as in the \code{MizerParams} object.
#'
#' If the object argument is of class \code{MizerSim} then the effort slot of the \code{MizerSim} object is used and the \code{effort} argument is not used.
#' @export
#' @docType methods
#' @rdname getFMortGear-methods
#' @aliases getFMortGear-method
#' @examples
#' \dontrun{
#' data(NS_species_params_gears)
#' data(inter)
#' params <- MizerParams(NS_species_params_gears, inter)
#' # Get the fishing mortality when effort is constant
#' # for all gears and time:
#' getFMortGear(params, effort = 1)
#' # Get the fishing mortality when effort is different
#' # between the four gears but constant in time:
#' getFMortGear(params, effort = c(0.5,1,1.5,0.75))
#' # Get the fishing mortality when effort is different
#' # between the four gears and changes with time:
#' effort <- array(NA, dim = c(20,4))
#' effort[,1] <- seq(from=0, to = 1, length=20)
#' effort[,2] <- seq(from=1, to = 0.5, length=20)
#' effort[,3] <- seq(from=1, to = 2, length=20)
#' effort[,4] <- seq(from=2, to = 1, length=20)
#' getFMortGear(params, effort=effort)
#' # Get the fishing mortality using the effort already held in a MizerSim object.
#' sim <- project(params, t_max = 20, effort = 0.5)
#' getFMortGear(sim)
#' getFMortGear(sim, time_range=c(10,20))
#' }
setGeneric('getFMortGear', function(object, effort, ...)
standardGeneric('getFMortGear'))
#' @rdname getFMortGear-methods
#' @aliases getFMortGear,MizerParams,numeric-method
# Effort is a single value or a numeric vector.
# Effort has no time time dimension
setMethod('getFMortGear', signature(object='MizerParams', effort = 'numeric'),
function(object, effort, ...){
no_gear <- dim(object@catchability)[1]
# If a single value, just repeat it for all gears
if(length(effort) == 1)
effort <- rep(effort, no_gear)
if (length(effort) != no_gear)
stop("Effort must be a single value or a vector as long as the number of gears\n")
# turn to array and call next method
effort <- array(effort,dim=c(1,no_gear))
fmort_gear <- getFMortGear(object,effort)
# fmort_gear is 4D, and first D is time with length 1
# Drop time dimension - bit annoying because we want to keep the other dims even if they have length 1
out <- array(fmort_gear, dim=dim(fmort_gear)[2:4])
dimnames(out) <- dimnames(fmort_gear)[2:4]
return(out)
}
)
#' @rdname getFMortGear-methods
#' @aliases getFMortGear,MizerParams,matrix-method
# Always returns a 4D array: time x gear x species x size
setMethod('getFMortGear', signature(object='MizerParams', effort = 'matrix'),
function(object, effort, ...){
no_gear <- dim(object@catchability)[1]
if (dim(effort)[2] != no_gear)
stop("Effort array must have a single value or a vector as long as the number of gears for each time step\n")
# F = sel * q * effort
sel_q <- sweep(object@selectivity, c(1,2), object@catchability, "*")
# Kinda nasty! ends up with 4D array
fmort_gear <- aaply(effort, 1, function(x,sel_q) sweep(sel_q, c(1), x, "*"), sel_q=sel_q, .drop=FALSE)
return(fmort_gear)
}
)
# Returns the fishing mortality: time * gear * species * size
#' @rdname getFMortGear-methods
#' @aliases getFMortGear,MizerSim,missing-method
setMethod('getFMortGear', signature(object='MizerSim', effort='missing'),
function(object,effort, time_range=dimnames(object@effort)$time, ...){
time_elements <- get_time_elements(object,time_range, slot="effort")
f_mort_gear <- getFMortGear(object@params, object@effort, ...)
return(f_mort_gear[time_elements,,,,drop=FALSE])
})
#----------------------------------------------------------------
# Fisheries mortality
#----------------------------------------------------------------
# Total fishing mortality from all gears
# species x size and maybe also by time if effort is time based
#' Get the total fishing mortality from all fishing gears by time, species and size
#'
#' Calculates the fishing mortality from all gears by species and size at each time step in the \code{effort} argument.
#' The total fishing mortality is just the sum of the fishing mortalities imposed by each gear.
#'
#' @param object A \code{MizerParams} object or a \code{MizerSim} object
#' @param effort The effort of each fishing gear. Only needed if the object argument is of class \code{MizerParams}. See notes below.
#' @param time_range Subset the returned fishing mortalities by time. The time range is either a vector of values, a vector of min and max time, or a single value. Default is the whole time range. Only used if the \code{object} argument is of type \code{MizerSim}.
#' @param drop Only used when object is of type \code{MizerSim}. Should dimensions of length 1 be dropped, e.g. if your community only has one species it might make presentation of results easier. Default is TRUE
#'
#' @return An array. If the effort argument has a time dimension, or object is of class \code{MizerSim}, the output array has three dimensions (time x species x size). If the effort argument does not have a time dimension, the output array has two dimensions (species x size).
#' @note Here: fishing mortality = catchability x selectivity x effort.
#'
#' The \code{effort} argument is only used if a \code{MizerParams} object is passed in. The \code{effort} argument can be a two dimensional array (time x gear), a vector of length equal to the number of gears (each gear has a different effort that is constant in time), or a single numeric value (each gear has the same effort that is constant in time). The order of gears in the \code{effort} argument must be the same the same as in the \code{MizerParams} object.
#'
#' If the object argument is of class \code{MizerSim} then the effort slot of the \code{MizerSim} object is used and the \code{effort} argument is not used.
#' @export
#' @docType methods
#' @rdname getFMort-methods
#' @aliases getFMort-method
#' @seealso \code{getFMortGear}, \code{project}
#' @examples
#' \dontrun{
#' data(NS_species_params_gears)
#' data(inter)
#' params <- MizerParams(NS_species_params_gears, inter)
#' # Get the total fishing mortality when effort is constant for all gears and time:
#' getFMort(params, effort = 1)
#' # Get the total fishing mortality when effort is different
#' # between the four gears but constant in time:
#' getFMort(params, effort = c(0.5,1,1.5,0.75))
#' # Get the total fishing mortality when effort is different
#' # between the four gears and changes with time:
#' effort <- array(NA, dim = c(20,4))
#' effort[,1] <- seq(from=0, to = 1, length=20)
#' effort[,2] <- seq(from=1, to = 0.5, length=20)
#' effort[,3] <- seq(from=1, to = 2, length=20)
#' effort[,4] <- seq(from=2, to = 1, length=20)
#' getFMort(params, effort=effort)
#' # Get the total fishing mortality using the effort already held in a MizerSim object.
#' sim <- project(params, t_max = 20, effort = 0.5)
#' getFMort(sim)
#' getFMort(sim, time_range = c(10,20))
#' }
setGeneric('getFMort', function(object, effort, ...)
standardGeneric('getFMort'))
#' @rdname getFMort-methods
#' @aliases getFMort,MizerParams,numeric-method
setMethod('getFMort', signature(object='MizerParams', effort='numeric'),
function(object, effort, ...){
fMortGear <- getFMortGear(object, effort, ...)
fMort <- apply(fMortGear, c(2,3), sum)
return(fMort)
})
#' @rdname getFMort-methods
#' @aliases getFMort,MizerParams,matrix-method
setMethod('getFMort', signature(object='MizerParams', effort='matrix'),
function(object, effort, ...){
fMortGear <- getFMortGear(object, effort, ...)
fMort <- apply(fMortGear, c(1,3,4), sum)
return(fMort)
})
#' @rdname getFMort-methods
#' @aliases getFMort,MizerSim,missing-method
setMethod('getFMort', signature(object='MizerSim', effort='missing'),
function(object, effort, time_range=dimnames(object@effort)[[1]], drop=TRUE, ...){
print(time_range)
time_elements <- get_time_elements(object,time_range, slot="effort")
fMort <- getFMort(object@params, object@effort, ...)
return(fMort[time_elements,,,drop=drop])
})
#----------------------------------------------------------------
# Total mortality Z
#----------------------------------------------------------------
#' getZ method for the size based model
#'
#' Calculates the total mortality on each species by size from predation mortality (M2), background mortality (M) and fishing mortality for a single time step.
#' @param object A \code{MizerParams} object.
#' @param n A matrix of species abundance (species x size).
#' @param n_pp A vector of the background abundance by size.
#' @param effort A numeric vector of the effort by gear or a single numeric effort value which is used for all gears.
#' @param m2 A two dimensional array of predation mortality (optional). Has dimensions no. sp x no. size bins in the community. If not supplied is calculated using the \code{getM2()} method.
#'
#' @return A two dimensional array (prey species x prey size).
#' @export
#' @seealso \code{\link{getM2}}, \code{\link{getFMort}}
#' @docType methods
#' @rdname getZ-methods
#' @aliases getZ-method
#' @examples
#' \dontrun{
#' data(NS_species_params_gears)
#' data(inter)
#' params <- MizerParams(NS_species_params_gears, inter)
#' # Project with constant fishing effort for all gears for 20 time steps
#' sim <- project(params, t_max = 20, effort = 0.5)
#' # Get the total mortality at a particular time step
#' getZ(params,sim@@n[21,,],sim@@n_pp[21,],effort=0.5)
#' }
setGeneric('getZ', function(object, n, n_pp, effort, m2, ...)
standardGeneric('getZ'))
#' @rdname getZ-methods
#' @aliases getZ,MizerParams,matrix,numeric,numeric,matrix-method
setMethod('getZ', signature(object='MizerParams', n = 'matrix', n_pp = 'numeric', effort='numeric', m2 = 'matrix'),
function(object, n, n_pp, effort, m2){
if (!all(dim(m2) == c(nrow(object@species_params),length(object@w)))){
stop("m2 argument must have dimensions: no. species (",nrow(object@species_params),") x no. size bins (",length(object@w),")")
}
f_mort <- getFMort(object, effort = effort)
z = sweep(m2 + f_mort,1,object@species_params$z0,"+")
return(z)
})
#' @rdname getZ-methods
#' @aliases getZ,MizerParams,matrix,numeric,numeric,missing-method
setMethod('getZ', signature(object='MizerParams', n = 'matrix', n_pp = 'numeric', effort='numeric', m2 = 'missing'),
function(object, n, n_pp, effort){
m2 <- getM2(object, n=n, n_pp=n_pp)
z <- getZ(object, n=n, n_pp=n_pp, effort=effort, m2=m2)
return(z)
})
#----------------------------------------------------------------
# Energy after metabolism and movement
#----------------------------------------------------------------
#' getEReproAndGrowth method for the size based model
#'
#' Calculates the energy available by species and size for reproduction and growth after metabolism and movement have been accounted for.
#' Used by the \code{project} method for performing simulations.
#' @param object A \code{MizerParams} object.
#' @param n A matrix of species abundance (species x size).
#' @param n_pp A vector of the background abundance by size.
#' @param feeding_level The current feeding level (optional). A matrix of size no. species x no. size bins. If not supplied, is calculated internally using the \code{getFeedingLevel()} method.
#'
#' @return A two dimensional array (species x size)
#' @export
#' @docType methods
#' @rdname getEReproAndGrowth-methods
#' @aliases getEReproAndGrowth-method
#' @seealso \code{\link{project}} and \code{\link{getFeedingLevel}}.
#' @examples
#' \dontrun{
#' data(NS_species_params_gears)
#' data(inter)
#' params <- MizerParams(NS_species_params_gears, inter)
#' # Project with constant fishing effort for all gears for 20 time steps
#' sim <- project(params, t_max = 20, effort = 0.5)
#' # Get the energy at a particular time step
#' getEReproAndGrowth(params,sim@@n[21,,],sim@@n_pp[21,])
#' }
setGeneric('getEReproAndGrowth', function(object, n, n_pp, feeding_level, ...)
standardGeneric('getEReproAndGrowth'))
#' @rdname getEReproAndGrowth-methods
#' @aliases getEReproAndGrowth,MizerParams,matrix,numeric,matrix-method
setMethod('getEReproAndGrowth', signature(object='MizerParams', n = 'matrix', n_pp = 'numeric', feeding_level='matrix'),
function(object, n, n_pp, feeding_level){
if (!all(dim(feeding_level) == c(nrow(object@species_params),length(object@w)))){
stop("feeding_level argument must have dimensions: no. species (",nrow(object@species_params),") x no. size bins (",length(object@w),")")
}
# assimilated intake
e <- sweep(feeding_level * object@intake_max,1,object@species_params$alpha,"*")
# Subtract basal metabolism and activity
e <- e - object@std_metab - object@activity
e[e<0] <- 0 # Do not allow negative growth
return(e)
})
#' @rdname getEReproAndGrowth-methods
#' @aliases getEReproAndGrowth,MizerParams,matrix,numeric,missing-method
setMethod('getEReproAndGrowth', signature(object='MizerParams', n = 'matrix', n_pp = 'numeric', feeding_level='missing'),
function(object, n, n_pp){
feeding_level <- getFeedingLevel(object, n=n, n_pp=n_pp)
e <- getEReproAndGrowth(object, n=n, n_pp=n_pp, feeding_level=feeding_level)
return(e)
})
#----------------------------------------------------------------
# Energy left for reproduction
#----------------------------------------------------------------
# assimilated food intake, less metabolism and activity, split between reproduction and growth
#' getESpawning method for the size based model
#'
#' Calculates the energy available by species and size for reproduction after metabolism and movement have been accounted for.
#' Used by the \code{project} method for performing simulations.
#' @param object A \code{MizerParams} object.
#' @param n A matrix of species abundance (species x size).
#' @param n_pp A vector of the background abundance by size.
#' @param e The energy available for reproduction and growth (optional). A matrix of size no. species x no. size bins. If not supplied, is calculated internally using the \code{getEReproAndGrowth()} method.
#'
#' @return A two dimensional array (prey species x prey size)
#' @export
#' @docType methods
#' @rdname getESpawning-methods
#' @aliases getESpawning-method
#' @seealso \code{\link{project}} and \code{\link{getEReproAndGrowth}}.
#' @examples
#' \dontrun{
#' data(NS_species_params_gears)
#' data(inter)
#' params <- MizerParams(NS_species_params_gears, inter)
#' # Project with constant fishing effort for all gears for 20 time steps
#' sim <- project(params, t_max = 20, effort = 0.5)
#' # Get the energy at a particular time step
#' getESpawning(params,sim@@n[21,,],sim@@n_pp[21,])
#' }
setGeneric('getESpawning', function(object, n, n_pp, e, ...)
standardGeneric('getESpawning'))
#' @rdname getESpawning-methods
#' @aliases getESpawning,MizerParams,matrix,numeric,matrix-method
setMethod('getESpawning', signature(object='MizerParams', n = 'matrix', n_pp = 'numeric', e = 'matrix'),
function(object, n, n_pp, e){
if (!all(dim(e) == c(nrow(object@species_params),length(object@w)))){
stop("e argument must have dimensions: no. species (",nrow(object@species_params),") x no. size bins (",length(object@w),")")
}
e_spawning <- object@psi * e
return(e_spawning)
}
)
#' @rdname getESpawning-methods
#' @aliases getESpawning,MizerParams,matrix,numeric,missing-method
setMethod('getESpawning', signature(object='MizerParams', n = 'matrix', n_pp = 'numeric', e = 'missing'),
function(object, n, n_pp){
e <- getEReproAndGrowth(object,n=n,n_pp=n_pp)
e_spawning <- getESpawning(object, n=n, n_pp=n_pp, e=e)
return(e_spawning)
})
#----------------------------------------------------------------
# Energy left for growth
#----------------------------------------------------------------
#'
#' Calculates the energy available by species and size for growth after metabolism and movement have been accounted for.
#' Used by the \code{project} method for performing simulations.
#' @param object A \code{MizerParams} object.
#' @param n A matrix of species abundance (species x size).
#' @param n_pp A vector of the background abundance by size.
#' @param e The energy available for reproduction and growth (optional, although if specified, e_spawning must also be specified). A matrix of size no. species x no. size bins. If not supplied, is calculated internally using the \code{getEReproAndGrowth()} method.
#' @param e_spawning The energy available for spawning (optional, although if specified, e must also be specified). A matrix of size no. species x no. size bins. If not supplied, is calculated internally using the \code{getESpawning()} method.
#'
#' @return A two dimensional array (prey species x prey size)
#' @export
#' @docType methods
#' @rdname getEGrowth-methods
#' @aliases getEGrowth-method
#' @seealso \code{\link{project}}
#' @examples
#' \dontrun{
#' data(NS_species_params_gears)
#' data(inter)
#' params <- MizerParams(NS_species_params_gears, inter)
#' # Project with constant fishing effort for all gears for 20 time steps
#' sim <- project(params, t_max = 20, effort = 0.5)
#' # Get the energy at a particular time step
#' getEGrowth(params,sim@@n[21,,],sim@@n_pp[21,])
#' }
setGeneric('getEGrowth', function(object, n, n_pp, e_spawning, e, ...)
standardGeneric('getEGrowth'))
#' @rdname getEGrowth-methods
#' @aliases getEGrowth,MizerParams,matrix,numeric,matrix,matrix-method
setMethod('getEGrowth', signature(object='MizerParams', n = 'matrix', n_pp = 'numeric', e_spawning='matrix', e='matrix'),
function(object, n, n_pp, e_spawning, e){
if (!all(dim(e_spawning) == c(nrow(object@species_params),length(object@w)))){
stop("e_spawning argument must have dimensions: no. species (",nrow(object@species_params),") x no. size bins (",length(object@w),")")
}
if (!all(dim(e) == c(nrow(object@species_params),length(object@w)))){
stop("e argument must have dimensions: no. species (",nrow(object@species_params),") x no. size bins (",length(object@w),")")
}
# Assimilated intake less activity and metabolism
# energy for growth is intake - energy for growth
e_growth <- e - e_spawning
return(e_growth)
})
#' @rdname getEGrowth-methods
#' @aliases getEGrowth,MizerParams,matrix,numeric,missing,missing-method
setMethod('getEGrowth', signature(object='MizerParams', n = 'matrix', n_pp = 'numeric', e_spawning='missing', e='missing'),
function(object, n, n_pp){
# Assimilated intake less activity and metabolism
e <- getEReproAndGrowth(object,n=n,n_pp=n_pp)
e_spawning <- getESpawning(object,n=n,n_pp=n_pp)
# energy for growth is intake - energy for growth
e_growth <- getEGrowth(object, n=n, n_pp=n_pp, e_spawning=e_spawning, e=e)
return(e_growth)
})
#----------------------------------------------------------------
# density independent recruitment (total egg production)
#----------------------------------------------------------------
#' getRDI method for the size based model
#'
#' Calculates the density independent recruitment (total egg production) before density dependence, by species.
#' Used by the \code{project} method for performing simulations.
#' @param object A \code{MizerParams} object.
#' @param n A matrix of species abundance (species x size).
#' @param n_pp A vector of the background abundance by size.
#' @param e_spawning The energy available for spawning (optional). A matrix of size no. species x no. size bins. If not supplied, is calculated internally using the \code{getESpawning()} method.
#' @param sex_ratio Proportion of the population that is female. Default value is 0.5.
#'
#' @return A numeric vector the length of the number of species
#' @export
#' @docType methods
#' @rdname getRDI-methods
#' @aliases getRDI-method
#' @seealso \code{\link{project}}
#' @examples
#' \dontrun{